初识算法
算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或者多个操作1
一.算法的特性
1.输入输出
有0个或多个输入
有一个或多个输出
2.有穷性
算法在执行有限的步骤后,自动结束不会出现无限循环,并且每个步骤在有限时间内完成
3.确定性
算法的每一步骤都具有确定的含义,不会出现二义性
4.可行性
算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成
二.算法设计的要求
1.正确性
算法至少应该具有输入,输出和加工处理无歧义性,能够正确1反映问题的需求,能够得到问题的正确答案
四个层次:
1.算法程序没有语法错误
2.算法程序对于合法的输入数据能够产生满足要求的输出结果
3.算法程序对于非法的输入数据能够得出满足规格说明的结果
4.算法程序对于精心选择的测试数据都有满足要求的输出结果
一般情况下,把第三条作为一个算法是否正确的标准
2.可读性
算法设计的另一目的的为了便于阅读,理解和交流
3.健壮性
一个好的算法还应该能对输入数据不合法的情况做恰当的处理
4.时间效率高和存储量低
四.事前分析估算方法-算法效率的度量方法
事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算
程序在计算机上运行所消耗的时间取决于以下因素:
1.算法采用的策略,方法
2.编译产生的代码质量
3.问题的输入规模
4.机械执行指令的速度
五.函数的渐近增长
给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么我们说f(n)的增长渐近快于g(n)
六.算法的时间复杂度
1.定义
语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况确定T(n)的数量级
T(n)=O(f(n))
这样用大写O()来体现算法时间复杂度的记法,叫做大O记法
1.O(1)-常数阶 2.O(n)-线性阶 3.O(n^2)-平方阶 4.O(logn)-对数阶 5.O(nlogn)-nlogn阶 6.O(n^3)-立方阶 7.O(2^n)-指数阶 消耗时间: O(n^n)>O(n!)>O(2^n)>O(n^3)>O(n^2)>O(nlogn)>O(n)>O(logn)>O(1) 像O(n^3)这样的,一般不去讨论,运行时间太久了
2.推导大O阶方法
1.用常数1取代运行时间中的所有加法常数
2.在修改后的运行次数函数中,只保留最高阶项
3.如果最高阶项存在且其系数不是1,则去除与这个项相乘的系数。
/*比如:2n^2+3n+5
->2n^2+3n+1
->2n^2
->n^2
所以大O阶是O(n^2)
*/