算法基本概念

初识算法

算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或者多个操作1

一.算法的特性

1.输入输出

有0个或多个输入

有一个或多个输出

2.有穷性

算法在执行有限的步骤后,自动结束不会出现无限循环,并且每个步骤在有限时间内完成

3.确定性

算法的每一步骤都具有确定的含义,不会出现二义性

4.可行性

算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成

二.算法设计的要求

1.正确性

算法至少应该具有输入,输出和加工处理无歧义性,能够正确1反映问题的需求,能够得到问题的正确答案

四个层次:

1.算法程序没有语法错误

2.算法程序对于合法的输入数据能够产生满足要求的输出结果

3.算法程序对于非法的输入数据能够得出满足规格说明的结果

4.算法程序对于精心选择的测试数据都有满足要求的输出结果

一般情况下,把第三条作为一个算法是否正确的标准

2.可读性

算法设计的另一目的的为了便于阅读,理解和交流

3.健壮性

一个好的算法还应该能对输入数据不合法的情况做恰当的处理

4.时间效率高和存储量低

四.事前分析估算方法-算法效率的度量方法

事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算

程序在计算机上运行所消耗的时间取决于以下因素:

1.算法采用的策略,方法

2.编译产生的代码质量

3.问题的输入规模

4.机械执行指令的速度

五.函数的渐近增长

给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n>N,f(n)总是比g(n)大,那么我们说f(n)的增长渐近快于g(n)

六.算法的时间复杂度

1.定义

语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况确定T(n)的数量级

T(n)=O(f(n))

这样用大写O()来体现算法时间复杂度的记法,叫做大O记法

1.O(1)-常数阶
2.O(n)-线性阶
3.O(n^2)-平方阶
4.O(logn)-对数阶
5.O(nlogn)-nlogn阶
6.O(n^3)-立方阶
7.O(2^n)-指数阶
消耗时间:
O(n^n)>O(n!)>O(2^n)>O(n^3)>O(n^2)>O(nlogn)>O(n)>O(logn)>O(1)
像O(n^3)这样的,一般不去讨论,运行时间太久了

2.推导大O阶方法

1.用常数1取代运行时间中的所有加法常数

2.在修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且其系数不是1,则去除与这个项相乘的系数。

/*比如:2n^2+3n+5
->2n^2+3n+1
->2n^2
->n^2
所以大O阶是O(n^2)
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值