代码讲解系列-CV(二)——卷积神经网络

一、系列大纲

第1讲CV基础框架
·环境配置
anaconda,cuda
IDE:vscode,pycharm
·linux常用命令,Git管理
·Coding流程与常用工具
第2讲卷积神经网络
pytorch入门
·数据输入和数据增强
CNN网络设计与模型训练
·指标评估和可视化
Timm库的使用
第3讲Transformer系列
ViT结构解析
使用ViT进行图像分类
·注意力的可视化
第4讲目标检测初探
·标注检测数据
·数据解析与输入
YOLOV8的使用
·指标评估
第5讲语义分割基础
·数据的标注与解析
·U-Net网络设计
网络输出与指标
第6讲视觉生成模型
·生成原理简介
·Stable Diffusion代码框架
·AP-adapter介绍
第7讲前沿论文复现
Readme与环境配置
模型的增删改查
代码Debug方法
第8讲模型的修改与设计
自定义输入数据
为模型添加Refine模块
为模型添加注意力

二、卷积神经网络(图像分类为例)

2.1 pytorch简介

训练框架

在这里插入图片描述

张量

在这里插入图片描述
在这里插入图片描述
对运算符进行重载,主要是形状变换
cat就是结合,split就是拆分

自动微分

在这里插入图片描述

动态计算图

在这里插入图片描述

更深入学习

熟悉API:

  • 数据输入(Dataset和Dataloader)
  • 模型搭建和训练(nn.Module)
  • 损失函数和反向传播
  • 模型保存

进阶功能:

  • 并行训练,混合精度训练
  • 冻结参数,复杂训练模式
  • 自定义前向和反向算子
  • 梯度裁剪
    新特性:
    Torch.Compile()
    FlashAttention

https://space.bilibili.com/478674499

2.2 数据输入和增强

Dataset—— torch.utils.data.Dataset

在这里插入图片描述
init就是把所有的数据都加载进来
getitem就是逐个读出

DataLoader——torch.utils.data.Dataloader

在这里插入图片描述

数据增强

在这里插入图片描述

2.3 CNN设计与训练

nn.Module

在这里插入图片描述
init把组件和模块定义好
forward就是调用模型的时候使用的

卷积层

2维卷积为例
输入和输出通道、尺寸、步长、填充、偏置(如果后面有归一化层,需要打开)、分组卷积。
在这里插入图片描述

池化层和归一化层

在这里插入图片描述
归一化中(BatchNorm2d用的最多)

模块

了解层之后,组成模块
在这里插入图片描述
在这里插入图片描述
一个列表一个字典,两个方式。这几个方法之间可以相互嵌套
列表:
在这里插入图片描述
字典最灵活,而且可读性很好
在这里插入图片描述

训练

优化器:决定优化方向
在这里插入图片描述
parameters就是参数的意思
train_loop就是训练循环

优化器清零、loss反向传播、更新参数

2.4 指标评估和可视化

指标评估

在这里插入图片描述
每个batch的loss进行相加、再除以长度(data_size)

Tensorboard

在这里插入图片描述
嗯,就是显示

Timm库

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周末不下雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值