新手小白在机器学习中用梯度下降法实现逻辑回归的时候,发现损失值loss一直将不下来,上下浮动,如下图所示:
后来尝试了很多改进方法都不对,我一直都在尝试更改学习模型的迭代次数,学习速率,但是忽略了数据集本身的问题,我采用的数据集特征较多且每个特征值下对应的数据值浮动较大,导致了梯度下降法实现过程中求解最优解的速度很慢。而且精度也不高,在做了数据归一化之后,损失值如下:
由于迭代次数较小,所以损失值的曲线弯的不明显,但很显然,在做了数据归一化之后,损失值收敛了。这也显示了数据归一化在数据处理中的重要性,下次遇到这样无法收敛的情况,可以从数据处理的角度出发来解决问题,问题不一定出现在学习模型上面。
关于为什么要做数据归一化和归一化方法可参考以下链接:
http://www.cnblogs.com/LBSer/p/4440590.html
梯度下降法中,loss值无法收敛
最新推荐文章于 2024-06-24 09:14:20 发布