极化码自适应CA-SCL译码(极化码译码)

为了提升极化码在有限长度情况下的译码性能,本文探讨了SCL译码和自适应CA-SCL译码方法。SCL译码通过增加复杂度实现了与最优ML性能相当的纠错能力。而CA-SCL译码通过结合CRC和极化码增强了纠错性能,但同时也增加了复杂度。自适应CA-SCL译码则通过动态调整列表大小L来平衡性能和复杂度,平均复杂度为O(LNlogN),在保证性能的同时降低了计算需求。相关研究可见于Li, Shen和Tse的论文。" 101530679,5894886,检查麦克风功能:确保语音设备正常工作,"['音频技术', '硬件测试', '声音设置']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们知道最初极化码提出来是运用SC译码,但短码和中等长度其译码性(误码率)能不如LDPC码码,,为了提升有限长度极化码的译码性能,我们主要从译码器的性能和极化码的纠错性能来考虑。
SCL:在增加复杂度的情况下,大幅度增加极化码纠错性能,在高信噪比下,与最优ML性能相同(L=32),其流程图如下:
在这里插入图片描述

CA-SCL:改善最小汉明距离(最小汉明距离增大),增加其纠错性能。把CRC和极化码极联。

CA-SCL流程图
CRC方法

自适应CA-SCL:CA-SCL译码虽然提升极化码的纠错性能,但是导致复杂度大幅度增加,为了降低其复杂度,让L自适应,从而降低其复杂度。其具体流程如下:
具体流程
流程图如下:

要实现极化CA-SCL译码算法仿真并在Matlab中通过参数化编程调整性能,您可以按照以下步骤进行: 参考资源链接:[高斯信道下极化CA-SCL译码算法及Matlab仿真代](https://wenku.csdn.net/doc/195xe0xodd?spm=1055.2569.3001.10343) 首先,确认您已经掌握了极化CA-SCL译码算法的基础知识,以及对高斯信道的理解。这将帮助您更好地理解仿真的环境和需求。 接下来,打开Matlab并加载《高斯信道下极化CA-SCL译码算法及Matlab仿真代》资源。这段资源将为您提供一个基础的仿真环境和算法框架,使得您可以在此基础上进行进一步的开发和参数调整。 在Matlab中,您需要定义信道模型和参数,包括信噪比(SNR)、长、信息位长度等。这些参数将直接关系到仿真结果和译码性能。 然后,您需要实现CA-SCL译码算法的核心逻辑,这通常包括初始化译码过程所需的变量和数据结构,例如初始化候选路径列表、计算路径的似然比等。 参数化编程允许您通过设置可调节的参数来控制算法的行为。例如,您可以调整列表的大小来控制译码过程中保留的候选路径数量,或者修改迭代次数来观察译码性能的变化。 在完成算法的实现后,运行仿真并记录结果。仿真应包括不同信噪比下的误率(BER)和帧错误率(FER)测试,以便评估算法在不同条件下的性能。 最后,根据仿真结果调整参数,优化译码性能。这可能涉及到多次迭代,每次迭代您都需要分析结果并调整参数以获得最佳性能。 通过上述步骤,您将能够在Matlab中实现并优化极化CA-SCL译码算法仿真。如果您希望深入了解信号处理和算法仿真的更多知识,建议继续探索《高斯信道下极化CA-SCL译码算法及Matlab仿真代》提供的高级内容,以及相关的电子信息工程和计算机专业资料。 参考资源链接:[高斯信道下极化CA-SCL译码算法及Matlab仿真代](https://wenku.csdn.net/doc/195xe0xodd?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值