Datawhale X 魔搭 AI夏令营-AIGC方向-task2知识总结

文生图背景

早期探索

(1960-1990)

最早出现于计算机视觉和图像处理。

早期图像生成技术主要依赖与规则和模板匹配,通过预定义的规则将文本转换为简单的图形。

受限于计算能力和算法,此阶段生成的图像质量较低,应用场景受限。

基于统计模型的方法

2000

研究者利用概率图模型和统计语言模型来生成图像。

受限于模型复杂性和计算资源限制,生成图像较为粗糙,不够逼真。

深度学习的崛起

2010

2014年Goodfellow提出GAN模型,后续发展的代表模型有DCGAN、Pix2Pix、StyleGAN。

2020年扩散模型提出,加速了基于语言模型的文生图模型技术的发展。

大规模预训练模型

2020

OpenAI的CLIP通过大规模的文本和图像配对数据训练,能够理解和生成高度一致的文本和图像。

DALL-E和Stable Diffusion进一步提升了生成图像的创意和细节表现能力。

文生图主要以SD系列基础模型为主,以及在其基础上微调的lora模型和人物基础模型等。

提示词

一般写法:主题描述,细节描述,修饰词,艺术风格,艺术家

【promts】Beautiful and cute girl, smiling, 16 years old, denim jacket, gradient background, soft colors, soft lighting, cinematic edge lighting, light and dark contrast, anime, super detail, 8k
【negative_prompt】(lowers, low quality, worst quality:1.2), (text:1.2), deformed, black and white, disfigured, low contrast, cropped, missing fingers
Lora

是Stable Diffusion中的一种轻量级的微调方法,它代表了“Low-Rank Adaptation”,即低秩适应。

Lora指一类通过特定微调技术应用于基础模型的扩展应用,在Stable Diffusion这一文本到图像合成模型的框架下,Lora常被用来对预训练好的大模型进行针对性优化,以实现对特定主题、风格或人物的精细化控制。

ComfyUI

ComfyUI是一个工作流工具,在ComfyUI平台的前端页面上,用户可以基于节点/流程图的界面设计并执行AIGC文生图或者文生视频的pipeline,主要用于简化优化AI模型的配置和训练过程。通过直观的界面和集成的功能,用户可以轻松地进行模型微调、数据预处理、图像生成等任务,从而提高工作效率和生成效果。

参考图控制

ControlNet是一种用于精确控制图像生成过程的技术组件,是一个附加到预训练的扩散模型上的可训练神经网络模块。扩散模型通常用于随机噪声逐渐生成图像的过程,而ControlNet的作用在于引入额外的控制信号,使得用户能够更具体地指导图像生成的各个方面(姿势关键点、分割图、深度图、颜色等)。

基础代码讲解

1.安装卸载依赖包
!pip install simple-aesthetics-predictor # 安装simple-aesthetics-predictor
!pip install -v -e data-juicer # 安装data-juicer
!pip uninstall pytorch-lightning -y # 卸载pytorch-lightning
!pip install peft lightning pandas torchvision # 安装 peft lightning pandas torchvision
!pip install -e DiffSynth-Studio # 安装DiffSynth-Studio
2.加载数据集
# 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime
from modelscope.msdatasets import MsDataset  #引入数据集模块msdatasets
ds = MsDataset.load(
    'AI-ModelScope/lowres_anime',
    subset_name='default',
    split='train',
    cache_dir="/mnt/workspace/kolors/data" # 指定缓存目录
) # 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime,赋值给参数ds
3.数据预处理

将数据集中的图像转换为RGB模式,并保存到指定目录,创建包含图像路径和文本描述的元数据文件metadata.jsonl

# 生成数据集
import json, os # 导入json和os模块
from data_juicer.utils.mm_utils import SpecialTokens # 导入SpecialTokens
from tqdm import tqdm # 导入tqdm进度条管理
os.makedirs("./data/lora_dataset/train", exist_ok=True) # 创建文件夹./data/lora_dataset/train
os.makedirs("./data/data-juicer/input", exist_ok=True) # 创建文件夹./data/data-juicer/input
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
    for data_id, data in enumerate(tqdm(ds)): # 遍历数据集ds
        image = data["image"].convert("RGB") # 将数据集的图片转换为RGB
        image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg") # 保存数据集的图片
        metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]} # 生成当前图片的索引数据
        f.write(json.dumps(metadata)) # 将索引数据写入文件./data/data-juicer/input/metadata.jsonl
        f.write("\n")

编写并保存data_juicer_config.yaml配置文件,用于后续的数据过滤和处理

# 配置data-juicer,并进行数据筛选过滤
# 配置过滤的规则
data_juicer_config = """
# global parameters
project_name: 'data-process' # 名称
dataset_path: './data/data-juicer/input/metadata.jsonl'  # 你前面生成的数据的索引文件
np: 4  # 线程数

text_keys: 'text' # 文件./data/data-juicer/input/metadata.jsonl的描述的字段名
image_key: 'image' # 文件./data/data-juicer/input/metadata.jsonl的图片字段名
image_special_token: '<__dj__image>'

export_path: './data/data-juicer/output/result.jsonl' # 筛选通过的图片结果保存的的索引文件

# process schedule
# a list of several process operators with their arguments
# 过滤的规则
process:
    - image_shape_filter: # 图片尺寸过滤
        min_width: 1024 # 最小宽度1024
        min_height: 1024 # 最小高度1024
        any_or_all: any # 符合前面条件的图片才会被保留
    - image_aspect_ratio_filter: # 图片长宽比过滤
        min_ratio: 0.5 # 最小长宽比0.5
        max_ratio: 2.0 # 最大长宽比2.0
        any_or_all: any # 符合前面条件的图片才会被保留
"""

# 保存data-juicer配置到data/data-juicer/data_juicer_config.yaml
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
    file.write(data_juicer_config.strip())
4.使用Data-Juicer进行数据处理

使用dj-process命令根据配置文件对数据进行过滤和处理,是生成result.json文件

# data-juicer开始执行数据筛选
!dj-process --config data/data-juicer/data_juicer_config.yaml
5.数据整理与训练

读取生成的result.jsonl文件中的数据,并将其转换为Pandas DataFrame,然后保存为CSV文件,并将图片保存在训练数据文件夹下

# 通过前面通过data-juicer筛选的图片索引信息./data/data-juicer/output/result.jsonl,生成数据集
import pandas as pd # 导入pandas
import os, json # 导入os和json
from PIL import Image # 导入Image
from tqdm import tqdm # 导入tqdm进度条管理
texts, file_names = [], [] # 定义两个空列表,分别存储图片描述和图片名称
os.makedirs("./data/lora_dataset_processed/train", exist_ok=True) # 创建文件夹./data/lora_dataset_processed/train
with open("./data/data-juicer/output/result.jsonl", "r") as file: # 打开前面data-juicer筛选的图片索引文件./data/data-juicer/output/result.jsonl
    for data_id, data in enumerate(tqdm(file.readlines())): # 遍历文件./data/data-juicer/output/result.jsonl
        data = json.loads(data) # 将json字符串转换为对象
        text = data["text"] # 获取对象中的text属性,也就是图片的描述信息
        texts.append(text) # 将图片的描述信息添加到texts列表中
        image = Image.open(data["image"][0]) # 获取对象中的image属性,也就是图片的路径,然后用这个路径打开图片
        image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg" # 生成保存图片的路径
        image.save(image_path) # 将图片保存到./data/lora_dataset_processed/train文件夹中
        file_names.append(f"{data_id}.jpg") # 将图片名称添加到file_names列表中
data_frame = pd.DataFrame() # 创建空的DataFrame
data_frame["file_name"] = file_names # 将图片名称添加到data_frame中
data_frame["text"] = texts # 将图片描述添加到data_frame中
data_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig") # 将data_frame保存到./data/lora_dataset_processed/train/metadata.csv
data_frame # 查看data_frame

下载可图模型

from diffsynth import download_models # 导入download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"]) # 下载可图模型
# DiffSynth-Studio提供了可图的Lora训练脚本,查看脚本信息
!python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py -h

执行Lora微调训练

import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
  --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
  --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
  --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
  --lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
  --lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
  --dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
  --output_path ./models \ # 指定输出路径,用于保存模型
  --max_epochs 1 \ # 设置最大训练轮数为 1
  --center_crop \ # 启用中心裁剪,这通常用于图像预处理
  --use_gradient_checkpointing \ # 启用梯度检查点技术,以节省内存
  --precision "16-mixed" # 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练

加载微调后的模型

# 加载lora微调后的模型
from diffsynth import ModelManager, SDXLImagePipeline # 导入ModelManager和SDXLImagePipeline
from peft import LoraConfig, inject_adapter_in_model # 导入LoraConfig和inject_adapter_in_model
import torch # 导入torch
# 加载LoRA配置并注入模型
def load_lora(model, lora_rank, lora_alpha, lora_path):
    lora_config = LoraConfig(
        r=lora_rank, # 设置LoRA的秩(rank)
        lora_alpha=lora_alpha, # 设置LoRA的alpha值,控制LoRA的影响权重
        init_lora_weights="gaussian", # 初始化LoRA权重为高斯分布
        target_modules=["to_q", "to_k", "to_v", "to_out"], # 指定要应用LoRA的模块
    )
    model = inject_adapter_in_model(lora_config, model) # 将LoRA配置注入到模型中
    state_dict = torch.load(lora_path, map_location="cpu") # 加载LoRA微调后的权重
    model.load_state_dict(state_dict, strict=False) # 将权重加载到模型中,允许部分权重不匹配
    return model # 返回注入LoRA后的模型
# 加载预训练模型
model_manager = ModelManager(
    torch_dtype=torch.float16, # 设置模型的数据类型为float16,减少显存占用
    device="cuda", # 指定使用GPU进行计算
    file_path_list=[
        "models/kolors/Kolors/text_encoder", # 文本编码器的路径
        "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors", # UNet模型的路径
        "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors" # VAE模型的路径
    ]
)
# 初始化图像生成管道
pipe = SDXLImagePipeline.from_model_manager(model_manager) # 从模型管理器中加载模型并初始化管道
# 加载并应用LoRA权重到UNet模型
pipe.unet = load_lora(
    pipe.unet, 
    lora_rank=16, # 设置LoRA的秩(rank),与训练脚本中的参数保持一致
    lora_alpha=2.0, # 设置LoRA的alpha值,控制LoRA对模型的影响权重
    lora_path="models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt" # 指定LoRA权重的文件路径
)
6.图像生成

设置正向提示词、反向提示词、执行次数、图片尺寸、随机种子

# 生成图像
torch.manual_seed(0) # 设置随机种子,确保生成的图像具有可重复性。如果想要每次生成不同的图像,可以将种子值改为随机值。
image = pipe(
    prompt="二次元,一个紫色短发小女孩,在家中沙发上坐着,双手托着腮,很无聊,全身,粉色连衣裙", # 设置正向提示词,用于指导模型生成图像的内容
    negative_prompt="丑陋、变形、嘈杂、模糊、低对比度", # 设置负向提示词,模型会避免生成包含这些特征的图像
    cfg_scale=4, # 设置分类自由度 (Classifier-Free Guidance) 的比例,数值越高,模型越严格地遵循提示词
    num_inference_steps=50, # 设置推理步数,步数越多,生成的图像细节越丰富,但生成时间也更长
    height=1024, width=1024, # 设置生成图像的高度和宽度,这里生成 1024x1024 像素的图像
)
image.save("1.jpg") # 将生成的图像保存为 "1.jpg" 文件
7.合并图像
# 图像拼接,展示总体拼接大图
import numpy as np  # 导入numpy库,用于处理数组和数值计算
from PIL import Image  # 导入PIL库中的Image模块,用于图像处理
images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]  # 读取1.jpg到8.jpg的图像,转换为numpy数组,并存储在列表images中
image = np.concatenate([  # 将四组图像在垂直方向上拼接
    np.concatenate(images[0:2], axis=1),  # 将第1组(images[0:2])的两张图像在水平方向上拼接
    np.concatenate(images[2:4], axis=1),  # 将第2组(images[2:4])的两张图像在水平方向上拼接
    np.concatenate(images[4:6], axis=1),  # 将第3组(images[4:6])的两张图像在水平方向上拼接
    np.concatenate(images[6:8], axis=1),  # 将第4组(images[6:8])的两张图像在水平方向上拼接
], axis=0)  # 将四组拼接后的图像在垂直方向上拼接
image = Image.fromarray(image).resize((1024, 2048))  # 将拼接后的numpy数组转换为图像对象,并调整大小为1024x2048像素
image  # 输出最终生成的图像对象,用于显示图像

实战演练

图片编号场景描述正向提示词反向提示词
图片1现代小猫玩耍现代风格,一只橘色的小猫在温馨的客厅里,正在追逐一个红色的毛线球,地上散落着玩具,猫的神情专注,背景是沙发和茶几,全身丑陋,变形,嘈杂,模糊,低对比度
图片2小猫发现神秘的古书现代风格,一只橘色的小猫站在书架旁,前爪搭在一本古老的书上,书本打开,散发出微弱的蓝色光芒,猫的眼神充满好奇,上半身,背景是满是书籍的书架。丑陋,变形,嘈杂,模糊,低对比度
图片3小猫被吸入古书穿越到古代现代风格与古风混合,一只橘色的小猫被神秘的蓝光包围,身体逐渐消失,背景是现代的客厅与古代风格的元素交织,全身,猫的表情惊讶。丑陋,变形,嘈杂,模糊,低对比度
图片4小猫降落在古代皇宫

古风,水墨画,一只橘色的小猫站在金碧辉煌的古代皇宫大殿内,四周是雕梁画栋,猫显得迷茫而好奇,全身,背景是宫殿的华丽装饰。

丑陋,变形,嘈杂,模糊,低对比度
图片5小猫与皇帝相遇古风,水墨画,一个威严的黑发皇帝坐在龙椅上,俯视着面前的橘色小猫,猫显得有些慌乱,全身,皇帝身穿龙袍,神情带着好奇,背景是大殿内的华丽陈设。丑陋,变形,嘈杂,模糊,低对比度
图片6小猫成为宫中的宠物古风,水墨画,一只橘色的小猫悠闲地躺在丝绸垫子上,四周有侍女在喂食和照料,猫的神情惬意,全身,背景是奢华的古代宫殿内景。丑陋,变形,嘈杂,模糊,低对比度
图片7小猫找到回到现代的线索古风,水墨画,一只橘色的小猫站在一个闪烁着蓝光的门前,门内隐约可见现代客厅的影像,猫的神情充满期待,全身,背景是古代宫殿中的幽暗角落。丑陋,变形,嘈杂,模糊,低对比度
图片8小猫回到现代继续玩耍现代风格,一只橘色的小猫在现代客厅中,再次追逐着毛线球,房间温馨如初,猫的神情愉快,全身,背景是熟悉的沙发和茶几。丑陋,变形,嘈杂,模糊,低对比度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值