时间复杂度

目录

一、概念定义

二、符号表示

三、常见种类

四、示例解析


一、概念定义

根据定义,时间复杂度指输入数据大小为 N 时,算法运行所需花费的时间。需要注意:

统计的是算法的“计算操作数量”,而不是“运行的绝对时间”。计算操作数量和运行绝对时间呈正相关关系,并不相等。

算法运行时间受到【编程语言 、计算机处理器速度、运行环境】等多种因素影响。例如,同样的算法使用 Python 或 C++ 实现、使用 CPU 或 GPU 、使用本地 IDE 或洛谷、力扣等OJ平台提交时,运行时间都不同。

体现的是计算操作随数据大小 N 变化时的变化情况。假设算法运行总共需要「 1 次操作」、「 100 次操作」,此两情况的时间复杂度都为常数级 O(1) 。需要「 N 次操作」、「 100N 次操作」的时间复杂度都为 O(N) 。

二、符号表示

根据输入数据的特点,时间复杂度具有【最差】、【平均】、【最佳】三种情况,分别使用 O , Θ , Ω 三种符号表示。 

以下借助一个查找算法的示例题目帮助理解。

题目:  输入长度为 N 的整数数组nums,判断此数组中是否有数字 8,

       若有则返回 true ,否则返回false。

解题算法:线性查找,即遍历整个数组,遇到 8 则返回 true。

代码:

bool findEight(vector<int>& nums) {
    for (int num : nums) {
        if (num == 8)
            return true;
    }
    return false;
}

1)最佳情况 Ω(1) : nums = [8, a, b, c, ...] ,即当数组首个数字为 8 时,无论 nums 有多少元素,线性查找的循环次数都为 1 次;

2)最差情况  O(N) : nums = [a, b, c, ...] 且 nums 中所有数字都不为 8 ,此时线性查找会遍历整个数组,循环 N 次;

3)平均情况  Θ : 需要考虑输入数据的分布情况,计算所有数据情况下的平均时间复杂度;例如本题目,需要考虑数组长度、数组元素的取值范围等;

注意:大 O 是最常使用的时间复杂度评价渐进符号 。

三、常见种类

根据从小到大排列,常见的算法时间复杂度主要有:

O(1) < O(logN) < O(N) < O(NlogN) < O(N^2) < O(2^N) <O(N!)

如图所示:

大图:

四、示例解析

对于以下所有示例,设输入数据大小为 N ,计算操作数量为 count 。图中每个「蓝色方块」代表一个单元计算操作。

1、常数 O(1)

运行次数与 N 大小呈常数关系,即不随输入数据大小 N 的变化而变化。例如:

int algorithm(int N) {
    int a = 1;
    int b = 2;
    int x = a * b + N;
    return 1;
}

对于以下代码,无论 a 取多大,都与输入数据大小 N 无关,因此时间复杂度仍为 O(1) 。

int algorithm(int N) {
    int count = 0;
    int a = 10000;
    for (int i = 0; i < a; i++) {
        count++;
    }
    return count;
}

 

2、线性 O(N)

循环运行次数与 N 大小呈线性关系,时间复杂度为 O(N) 。

int algorithm(int N) {
    int count = 0;
    for (int i = 0; i < N; i++)
        count++;
    return count;
}

对于以下代码,虽然是两层循环,但第二层与 N 大小无关,因此整体仍与 N 呈线性关系。

int algorithm(int N) {
    int count = 0;
    int a = 10000;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < a; j++) {
            count++;
        }
    }
    return count;
}

3、平方 O(N^2)

两层循环相互独立,都与 N 呈线性关系,因此总体与 N 呈平方关系,时间复杂度为 O(N^2)。

int algorithm(int N) {
    int count = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            count++;
        }
    }
    return count;
}

以「冒泡排序」为例,其包含两层独立循环:

第一层复杂度为 O(N) ;

第二层平均循环次数为 O(N/2) ,复杂度为 O(N) ,推导过程如下:
O(N/2) = O(1/2)O(N) = O(1)O(N) = O(N)

因此,冒泡排序的总体时间复杂度为 O(N^2) ,代码如下所示。

vector<int> bubbleSort(vector<int>& nums) {
    int N = nums.size();
    for (int i = 0; i < N - 1; i++) {
        for (int j = 0; j < N - 1 - i; j++) {
            if (nums[j] > nums[j + 1]) {
                swap(nums[j], nums[j + 1]);
            }
        }
    }
    return nums;
}

4、指数 O(2^N)

生物学科中的 “细胞分裂” 即是指数级增长。初始状态为 1 个细胞,分裂一轮后为 2 个,分裂两轮后为 4 个,……,分裂 N 轮后有 2^N 个细胞。

算法中,指数阶常出现于递归,算法原理图与代码如下所示。

int algorithm(int N) {
    if (N <= 0) return 1;
    int count_1 = algorithm(N - 1);
    int count_2 = algorithm(N - 1);
    return count_1 + count_2;
}

 

5、阶乘 O(N!)

阶乘阶对应数学上常见的 “全排列” 。即给定 N 个互不重复的元素,求其所有可能的排列方案,则方案数量为:

N×(N−1)×(N−2)×⋯×2×1=N!

如下图与代码所示,阶乘常使用递归实现,算法原理:第一层分裂出 N 个,第二层分裂出 N - 1 个,…… ,直至到第 N 层时终止并回溯。

int algorithm(int N) {
    if (N <= 0) return 1;
    int count = 0;
    for (int i = 0; i < N; i++) {
        count += algorithm(N - 1);
    }
    return count;
}

 

6、对数 O(logN) 

对数阶与指数阶相反,指数阶为 “每轮分裂出两倍的情况” ,而对数阶是 “每轮排除一半的情况” 。对数阶常出现于「二分法」、「分治」等算法中,体现着 “一分为二” 或 “一分为多” 的算法思想。

设循环次数为 m ,则输入数据大小 N 与 2^m 呈线性关系,两边同时取 log(2, ) 的对数,则得到循环次数 m 与 log (2,N) 呈线性关系,即时间复杂度为 O(logN) 。

int algorithm(int N) {
    int count = 0;
    float i = N;
    while (i > 1) {
        i = i / 2;
        count++;
    }
    return count;
}


如以下代码所示,对于不同 a 的取值,循环次数 m 与 log (a,N) 呈线性关系 ,时间复杂度为 O( log(a,N) ) 。而无论底数 a 取值,时间复杂度都可记作 O(logN) ,根据对数换底公式的推导如下:

int algorithm(int N) {
    int count = 0;
    float i = N;
    int a = 3;
    while (i > 1) {
        i = i / a;
        count++;
    }
    return count;
}

7、线性对数 O(N*logN) 

两层循环相互独立,第一层和第二层时间复杂度分别为 O(logN) 和 O(N) ,则总体时间复杂度为 O(NlogN) ;

int algorithm(int N) {
    int count = 0;
    float i = N;
    while (i > 1) {
        i = i / 2;
        for (int j = 0; j < N; j++)
            count++;
    }
    return count;
}

线性对数阶常出现于排序算法,例如「快速排序」、「归并排序」、「堆排序」等,其时间复杂度原理如下图所示。

 

我是吕同学,祝自己也祝您变强了~ 

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吕飞雨的头发不能秃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值