想了解指数分布,要先从几何分布开始。
几何分布
伯努利实验
能够在相同的条件下重复、独立的实验。实验结果只有发生
和不发生
。
几何分布
- 属于离散型的概率分布。
- 做
n
次伯努利实验,只有第k
次成功,即前k-1
次都失败,的概率。 - 成功的概率为
p
。 - 因为是伯努利实验,所以要么成功要么失败,失败的概率为
1-p
。
设随机变量X
为首次成功时做过的实验次数。
P
(
X
=
k
)
=
p
⋅
(
1
−
p
)
k
−
1
P(X=k) = p·(1-p)^{k-1}
P(X=k)=p⋅(1−p)k−1
P(X=k)
就是不断的做伯努利实验,直到第k
次才成功,这样的事件发生的概率。
指数分布
泊松分布
泊松分布的推导
泊松分布描述的是在单位时间
内,事件发生k
次的概率。
- 其中
单位时间
不一定是1秒,也可以是1分钟、1小时,等等。 - 举个例子
一天内,某篇论文的阅读量为200次。
一天
就是单位时间,论文被阅读
是一个事件,200次
是该事件发生的次数。
指数分布
指数分布描述的是事件发生的时间间隔
所对应的概率。
- 事件发生的时间间隔,不一定是两次
发生
事件的事件间隔,也可以是事件未发生
到发生
的时间间隔。 - 举个例子
一家生日蛋糕店,事件是:卖出蛋糕。
事件发生的时间间隔
无非两种情况:
第一次
卖出蛋糕。t1
第k
次卖出蛋糕与第k+1
次卖出蛋糕。t2
- 换句话说,指数分布描述的是
下一次
事件发生,所等待时间
的概率。
比如2天内
,就能卖出蛋糕的概率为:(设X
为等待的时间)
P ( X ≤ 2 ) P(X≤2) P(X≤2)
与泊松分布、几何分布的联系
指数分布的随机变量是时间
,下一次事件发生所经过的时间。
泊松分布的随机变量是事件发生的次数
,下一个单位时间
内,事件发生的次数。
假设下一次事件发生,所经过的时间为T
,单位时间为t
,那么就有T/t
个单位时间,将T/t
记作k
。
而单位时间内事件不发生的概率,也就是事件发生0次的概率可以用泊松分布表示,同时可以认为是第k+1
次实验才成功的几何分布:
单
位
时
间
内
成
功
k
次
:
P
(
X
=
k
)
=
λ
k
⋅
e
−
λ
k
!
单位时间内成功k次:P(X=k) = \frac{λ^k·e^{-λ}}{k!}
单位时间内成功k次:P(X=k)=k!λk⋅e−λ
单
位
时
间
成
功
0
次
(
失
败
)
:
P
(
X
=
0
)
=
λ
0
⋅
e
−
λ
0
!
=
e
−
λ
单位时间成功0次(失败):P(X=0) = \frac{λ^0·e^{-λ}}{0!} = e^{-λ}
单位时间成功0次(失败):P(X=0)=0!λ0⋅e−λ=e−λ
那么T
时间内(k
个单位时间)事件不发生的概率为:
k
个
单
位
时
间
都
失
败
:
P
(
X
>
T
)
=
(
e
−
λ
)
k
k个单位时间都失败:P(X>T) = (e^{-λ})^k
k个单位时间都失败:P(X>T)=(e−λ)k
X>T
:等待的时间超过T
,也就是T
时间内,事件没有发生。
所以,T时间内事件发生的概率为:
P
(
X
≤
T
)
=
1
−
e
−
k
λ
P(X≤T)=1-e^{-kλ}
P(X≤T)=1−e−kλ
时间是大于0的,其他的部分都为不可能事件,也就是时间小于等于0
的部分概率为0
。
概率密度函数f(x)
:
P
(
X
≤
T
)
=
∫
−
∞
T
f
(
X
)
⋅
d
X
=
∫
0
T
f
(
X
)
⋅
d
X
=
1
−
e
−
k
λ
P(X≤T)=∫_{-∞}^{T}f(X)·dX = ∫_{0}^{T}f(X)·dX = 1-e^{-kλ}
P(X≤T)=∫−∞Tf(X)⋅dX=∫0Tf(X)⋅dX=1−e−kλ
f
(
X
)
=
λ
⋅
e
−
k
λ
f(X) = λ·e^{-kλ}
f(X)=λ⋅e−kλ
f
(
x
)
=
{
λ
⋅
e
−
k
λ
x
>
0
0
e
l
s
e
f(x) = \begin{cases} \quad λ·e^{-kλ} \,& x>0 \\ \quad 0 & else \end{cases}
f(x)={λ⋅e−kλ0x>0else
分布函数F(x)
:
f
(
x
)
=
{
1
−
e
−
k
λ
x
≥
0
0
x
<
0
f(x) = \begin{cases} \quad 1-e^{-kλ} \,& x≥0 \\ \quad 0 & x<0 \end{cases}
f(x)={1−e−kλ0x≥0x<0
指数分布的无记忆性
事件在T事件内发生的概率为:
P
(
X
≤
x
)
=
∫
0
x
f
(
X
)
⋅
d
X
=
F
(
x
)
P(X≤x) = ∫_0^xf(X)·dX = F(x)
P(X≤x)=∫0xf(X)⋅dX=F(x)
也就是积分区域的面积:
事件在T时间之后发生的概率为:
所谓无记忆性,就是等待的时间不会影响后面等待的时间。
比如我希望能在a+b
时间后能卖出蛋糕,我先等了a
时间,再等b
时间和我直接等a+b
时间的概率是一样的。不会因为我等了a
时间,后面就只需要等小于或大于b
的时间。
所以:
等待时间X
超过T
的概率为
P
(
X
>
T
)
=
1
−
F
(
T
)
=
e
−
λ
x
P(X>T) =1-F(T) = e^{-λx}
P(X>T)=1−F(T)=e−λx
P
(
X
>
a
+
b
∣
X
>
a
)
=
P
(
X
>
a
+
b
)
P
(
X
>
a
)
=
e
−
λ
(
a
+
b
)
e
−
λ
a
=
e
−
λ
b
=
P
(
X
>
b
)
P(X>a+b|X>a) = \frac{P(X>a+b)}{P(X>a)} = \frac{e^{-λ(a+b)}}{e^{-λa}} = e^{-λb} = P(X>b)
P(X>a+b∣X>a)=P(X>a)P(X>a+b)=e−λae−λ(a+b)=e−λb=P(X>b)
- 蓝色+黄色+紫色 = P(X>a)
- 黄色+紫色 = P(X>b)
- 紫色 = P(X>a+b)