指数分布的推导

想了解指数分布,要先从几何分布开始。

几何分布

伯努利实验

能够在相同的条件下重复、独立的实验。实验结果只有发生不发生

几何分布

  • 属于离散型的概率分布。
  • n次伯努利实验,只有第k次成功,即前k-1次都失败,的概率。
  • 成功的概率为p
  • 因为是伯努利实验,所以要么成功要么失败,失败的概率为1-p

设随机变量X首次成功时做过的实验次数。
P ( X = k ) = p ⋅ ( 1 − p ) k − 1 P(X=k) = p·(1-p)^{k-1} P(X=k)=p(1p)k1
P(X=k)就是不断的做伯努利实验,直到第k次才成功,这样的事件发生的概率。

指数分布

泊松分布

泊松分布的推导
泊松分布描述的是在单位时间内,事件发生k次的概率。

  • 其中单位时间不一定是1秒,也可以是1分钟、1小时,等等。
  • 举个例子
    一天内,某篇论文的阅读量为200次。
    一天就是单位时间,论文被阅读是一个事件,200次是该事件发生的次数。

指数分布

指数分布描述的是事件发生的时间间隔所对应的概率。

  • 事件发生的时间间隔,不一定是两次发生事件的事件间隔,也可以是事件未发生发生的时间间隔。
  • 举个例子
    一家生日蛋糕店,事件是:卖出蛋糕。
    事件发生的时间间隔无非两种情况:
    第一次卖出蛋糕。t1
    k次卖出蛋糕与第k+1次卖出蛋糕。t2
    在这里插入图片描述
  • 换句话说,指数分布描述的是下一次事件发生,所等待时间的概率。
    比如2天内,就能卖出蛋糕的概率为:(设X为等待的时间)
    P ( X ≤ 2 ) P(X≤2) P(X2)

与泊松分布、几何分布的联系

指数分布的随机变量是时间,下一次事件发生所经过的时间。
泊松分布的随机变量是事件发生的次数,下一个单位时间内,事件发生的次数。


假设下一次事件发生,所经过的时间为T,单位时间为t,那么就有T/t个单位时间,将T/t记作k
而单位时间内事件不发生的概率,也就是事件发生0次的概率可以用泊松分布表示,同时可以认为是第k+1次实验才成功的几何分布:
单 位 时 间 内 成 功 k 次 : P ( X = k ) = λ k ⋅ e − λ k ! 单位时间内成功k次:P(X=k) = \frac{λ^k·e^{-λ}}{k!} kP(X=k)=k!λkeλ
单 位 时 间 成 功 0 次 ( 失 败 ) : P ( X = 0 ) = λ 0 ⋅ e − λ 0 ! = e − λ 单位时间成功0次(失败):P(X=0) = \frac{λ^0·e^{-λ}}{0!} = e^{-λ} 0P(X=0)=0!λ0eλ=eλ
那么T时间内(k个单位时间)事件不发生的概率为:
k 个 单 位 时 间 都 失 败 : P ( X > T ) = ( e − λ ) k k个单位时间都失败:P(X>T) = (e^{-λ})^k kP(X>T)=(eλ)k

  • X>T:等待的时间超过T,也就是T时间内,事件没有发生。

所以,T时间内事件发生的概率为:
P ( X ≤ T ) = 1 − e − k λ P(X≤T)=1-e^{-kλ} P(XT)=1ekλ

在这里插入图片描述
时间是大于0的,其他的部分都为不可能事件,也就是时间小于等于0的部分概率为0
概率密度函数f(x)
P ( X ≤ T ) = ∫ − ∞ T f ( X ) ⋅ d X = ∫ 0 T f ( X ) ⋅ d X = 1 − e − k λ P(X≤T)=∫_{-∞}^{T}f(X)·dX = ∫_{0}^{T}f(X)·dX = 1-e^{-kλ} P(XT)=Tf(X)dX=0Tf(X)dX=1ekλ
f ( X ) = λ ⋅ e − k λ f(X) = λ·e^{-kλ} f(X)=λekλ
f ( x ) = { λ ⋅ e − k λ   x > 0 0 e l s e f(x) = \begin{cases} \quad λ·e^{-kλ} \,& x>0 \\ \quad 0 & else \end{cases} f(x)={λekλ0x>0else
分布函数F(x):
f ( x ) = { 1 − e − k λ   x ≥ 0 0 x < 0 f(x) = \begin{cases} \quad 1-e^{-kλ} \,& x≥0 \\ \quad 0 & x<0 \end{cases} f(x)={1ekλ0x0x<0

指数分布的无记忆性

事件在T事件内发生的概率为:
P ( X ≤ x ) = ∫ 0 x f ( X ) ⋅ d X = F ( x ) P(X≤x) = ∫_0^xf(X)·dX = F(x) P(Xx)=0xf(X)dX=F(x)
也就是积分区域的面积:
在这里插入图片描述
事件在T时间之后发生的概率为:
在这里插入图片描述
所谓无记忆性,就是等待的时间不会影响后面等待的时间。
比如我希望能在a+b时间后能卖出蛋糕,我先等了a时间,再等b时间和我直接等a+b时间的概率是一样的。不会因为我等了a时间,后面就只需要等小于或大于b的时间。
所以:
等待时间X超过T的概率为
P ( X > T ) = 1 − F ( T ) = e − λ x P(X>T) =1-F(T) = e^{-λx} P(X>T)=1F(T)=eλx
P ( X > a + b ∣ X > a ) = P ( X > a + b ) P ( X > a ) = e − λ ( a + b ) e − λ a = e − λ b = P ( X > b ) P(X>a+b|X>a) = \frac{P(X>a+b)}{P(X>a)} = \frac{e^{-λ(a+b)}}{e^{-λa}} = e^{-λb} = P(X>b) P(X>a+bX>a)=P(X>a)P(X>a+b)=eλaeλ(a+b)=eλb=P(X>b)
在这里插入图片描述

  • 蓝色+黄色+紫色 = P(X>a)
  • 黄色+紫色 = P(X>b)
  • 紫色 = P(X>a+b)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值