二叉树的基本操作

数据结构 专栏收录该内容
5 篇文章 0 订阅

typedef int BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType data;
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
}BT;

递归实现二叉树的前序、中序、后序遍历

//前序遍历 
void PrevOrder(BT* root)
{
	if(root==NULL)
	{	
		printf("NULL ");
		return;
	}
	printf("%d ",root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
 } 
 
//中序遍历
void InOrder(BT* root)
{
	if(root==NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ",root->data);
	InOrder(root->right);
 } 
 
//后序遍历
void PostOrder(BT* root)
{
	if(root==NULL)
	{	
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ",root->data);
 }  

遍历法计算节点个数

int size=0;
void TreeSize(BT* root)
{
	if(root==NULL){
		return;
	}
	size++; 
	TreeSize(root->left);
	TreeSize(root->right);
 } 

分治法计算节点数

int TreeSize2(BT* root)
{
	if(root==NULL)
	{
		return 0;
	 } 
	return 1+TreeSize2(root->left)+TreeSize2(root->right);
}

计算叶子节点数

int BTreeLeafSize(BT* root)
{
	if(root==NULL)
	{
		return 0;
	}
	
	if(root->left==NULL&&root->right==NULL)
	{
		return 1;
	}
	
	return BTreeLeafSize(root->left)+BTreeLeafSize(root->right);
}

计算第K层的节点数(root为第一层)

int BTreeKLeveLSize(BT* root,int K) 
{
	if(root==NULL)
	{
		return 0;
	}
	
	if(K==1)
	{
		return 1;
	}
	
	return BTreeKLeveLSize(root->left,K-1)+BTreeKLeveLSize(root->right,K-1);
}

找到为x的节点

BT* TreeFind(BT* root,int x)
{
	if(root==NULL)
	    return NULL;
	if(root->data==x)
	    return root;
	
	BT* ret=TreeFind(root->left,x);
	if(ret!=NULL)
	{
		return root;
	}
	
	ret=TreeFind(root->right,x);
	if(ret!=NULL)
	{
		return root;
	}
	return NULL;
} 
  • 6
    点赞
  • 5
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值