小数化分数

该博客介绍了如何将简单小数和循环小数转换为最简分数的方法,包括使用9和0构造分母以及利用最大公约数进行约分。通过示例解释了公式,并提供了一个C++程序实现,该程序读取输入的小数并输出其最简分数形式。程序中包含了自定义的最大公约数函数,并展示了对样例输入的处理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题描述】
任何小数都能表示成分数的形式,对于給定的小数,编写程序其化为最简分数输出,小数包括简单小数和循环小数。
【输入形式】
第一行是一个整数N,表示有多少组数据。
每组数据只有一个纯小数,也就是整数部分为0。小数的位数不超过9位,循环部分用()括起来。
【输出形式】
对每一个对应的小数化成最简分数后输出,占一行
【样例输入】
3
0.(4)
0.5
0.32(692307)
【样例输出】
4/9
1/2
17/52

解题思路:通过查资料得知循环小数化分数有以下公式:
用9和0做分母,首先有一个循环节有几位数字就几个9,接着有几个没加入循环的数就加几个0,再用第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差做分子。能约分的要约分。
例如:
0.32(692307)
分母 = 99999900, 分子 = 32692307-32, 最大公约数:1923075, 所以化为分数:17/52
0.(4)
分母 = 9, 分子 = 4 – 0, 最大公约数:1, 化为分数:4/9

补充:algorithm中有求最大公约数的函数__gcd;
但是我用visual studio2019中没有这个函数,但是拿去交能AC,所以只能自己写,我换其他编译器有这个函数。

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

//求最大公约数
inline int __gcd(int a, int b) {
	return b > 0 ? __gcd(b, a % b) : a;
}

void fenshu(string str)
{
	long long  den, den1, mol, s, flag, num1, num2, k;
	int len = str.size(), left = 0, right = 0;
	flag = mol = s = num1 = num2 = 0;
	den = den1 = 1;
	for (int i = 2; i < len ; i++)
	{
		if (str[i] == '(') 
		{
			flag = 1;
			break;
		}
	}
	if (flag == 1)
	{
		left = str.find("("), right = str.find(")");  //分别记下"("和")"的位置
		s = right - left - 1;  //循环部分的长度
		//是循环小数
		for (int i = 2; i < len; i++)
		{
			if (str[i] != '(' && str[i] != ')')
			{
				num2 = num2 * 10 + str[i] - '0';   //求小数点后的数
				den *= 10;
			}
			
			if (i < left)  
			{
				den1 *= 10;
				num1 = num1 * 10 + str[i] - '0';  //求小数点后"("之间的数
			}
		}
		den -= den1;  //求分母
		mol = num2 - num1;  //分子
		k = __gcd(mol, den);  //求分母和分子的最大公约数
		den /= k, mol /= k;
		cout << mol << "/" << den << endl;
	}
	//有限小数
	else
	{
		for (int i = 2; i < len; i++)
		{
			den *= 10;
			mol = mol * 10 + str[i] - '0';
			k = __gcd(mol, den);
			den /= k, mol /= k;
		}
		cout << mol << "/" << den << endl;
	}
}

int main()
{
	
	int n, i;
	cin >> n;
	vector<string> str(n);
	for (i = 0; i < n; i++)
	{
		cin >> str[i];
	}
	for (int i = 0; i < n; i++)
	{
		fenshu(str[i]);
	}
	return 0;
}

### C语言中小数分数的实现 为了在C语言中将小数转换为分数,可以通过以下方式实现。此过程涉及读取一个小数值并将其表示为最简形式的分数。 #### 定义函数用于计算最大公约数 (GCD) 首先定义一个辅助函数 `gcd` 来求解两个整数的最大公约数(Greatest Common Divisor),这一步骤对于简最终得到的分数至关重要[^3]: ```c #include <stdio.h> // 计算两数的最大公约数 int gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); } ``` #### 主要逻辑:从小数分数 接下来编写主要功能部分,这里假设输入的是正的小数,并且不考虑负数情况以及大于等于1的情况作为简单例子展示。实际应用时可以根据需求调整范围限制。 ```c void decimalToFraction(double dec, int *numerator, int *denominator) { double tolerance = 1e-6; // 设置精度阈值 // 初始分子分母初值 *denominator = 1; while ((dec - (*numerator)/(*denominator)) > tolerance || ((*numerator)/(*denominator)-dec) > tolerance){ ++(*denominator); *numerator = round(dec * (*denominator)); // 使用 GCD 函数简当前获得的结果 int divisor = gcd(*numerator,*denominator); *numerator /=divisor ; *denominator/=divisor ; } } int main(){ double value = 0.75; // 测试用例中的小数值 int numerator=0 , denominator=0; decimalToFraction(value,&numerator,&denominator); printf("%.2f 的近似分数是:%d/%d\n",value,numerator,denominator); return 0; } ``` 上述代码片段展示了如何把给定的一个双精度浮点数(`double`)转为其对应的分数表达形式。其中采用了逐步增加分母直到找到满足一定误差范围内最佳匹配的方式;同时利用之前提到过的`gcd()`来进行约分简工作以确保输出是最简的真分数形态[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值