本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。
设计步骤
使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;
使用Python语言编写Spark程序对HDFS(Hadoop Distributed File System)中的数据进行处理分析,并把分析结果写入到MySQL数据库;
利用echarts+springboot进行前端可视化分析与展示。
主要功能描述
系统模块分为管理员模块与普通用户模块,普通用户查看可视化效果,管理员在后端负责管理。其功能如下:
管理员功能:
登录:系统分配管理员账号与密码,管理员提交正确的账号密码后登录系统。
个人信息:管理员可以查看ID、姓名、联系电话、邮箱以及头像。
用户管理:管理员可以查看系统其他用户的个人信息。
地铁数据:可视化地铁客流数据,管理员可以查看出行高峰期的10个时间段,以及地铁客流量最多的前10个站点。
预测分析:可视化客流量预测数据,管理员可以查看人流量随时间变化的趋势预测图。
普通用户功能:
登录注册:普通用户第一次使用时可通过手机号码或者邮箱进行注册,已经注册好账号的普通用户输入账号密码后登录系统。
个人信息:普通用户可以查看个人ID、姓名、联系电话、邮箱以及头像。
地铁数据:可视化客流预测图,普通用户可以查