中文译名:ChatGPT能否检测深度伪造?基于多模态大型语言模型进行媒体取证的研究
发布网站:http://arxiv.org/abs/2403.14077
阅读原因
大模型安全内容相关、方班需要
摘要
深度伪造(DeepFakes)是指人工智能生成的媒体内容,由于其被用作造谣的手段,已日益引起人们的关注。目前,检测 DeepFakes 的问题主要通过编程机器学习算法来解决。在这项工作中,我们研究了多模态大型语言模型(LLM)在检测 DeepFake 方面的能力。我们进行了定性和定量实验来展示多模态大语言模型,并表明它们可以通过仔细的实验符号和提示工程来识别人工智能生成的图像。考虑到 LLM 本身并不是为媒体取证任务量身定制的,而且这一过程不需要编程,因此这 一点非常有趣。我们讨论了多模态 LLMs 在这些任务中的局限性,并提出了可能的改进建议。
研究背景
生成式AI蓬勃发展、应用广泛
1.存在问题
滥用人工智能生成的有害内容严重破坏了信息的可信度和数字媒体的信任度,识别 DeepFakes 已成为媒体取证领域一项重要而紧急的任务。
2.传统方法
检测方法:专用的机器学习算法;基于数据挖掘的深度神经网络模型
存在问题:
- 有监督训练,需要标注数据集
- 依赖于媒体信息的统计特征
- 需要经过特殊的方法调试后方可投入使用
总结:开销大,用户不友好(需要有一定的编程能力)
3.最新研究
检测方法:使用LLM识别面部欺骗