11-最短路径

ds-多源最短路径

题目描述
一个有向图中有 个顶点和 条单向路径 , 试求任意两地点间最短距离。

Input Format
第一行两个正整数 和 ,分别代表点的数量和路径的数量。 0< <20, 0<= <50

之后 行每行有三个整数 分别表示 路径 的起点和终点序号和路径长度。顶点编号从0开始,0<=i,j<n,0<k

Output Format
顶点之间最短路径矩阵(n*n),-1代表不连通。

每一行的最后一个数字后面没有空格。

样例输入输出
样例1
输入:
3 5
0 1 6
0 2 13
1 0 10
1 2 4
2 0 5
输出:
0 6 10
9 0 4
5 11 0
样例2
输入:
6 0
输出:
0 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1
-1 -1 0 -1 -1 -1
-1 -1 -1 0 -1 -1
-1 -1 -1 -1 0 -1
-1 -1 -1 -1 -1 0

#include <iostream>
#include <vector>
#include <limits>

using namespace std;

const int INF = numeric_limits<int>::max();

void floydWarshall(vector<vector<int>>& graph, int n) {
    for (int k = 0; k < n; ++k) {
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                if (graph[i][k] != INF && graph[k][j] != INF) {
                    graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j]);
                }
            }
        }
    }
}

int main() {
    int n, m;
    cin >> n >> m;

    vector<vector<int>> graph(n, vector<int>(n, INF));
    for (int i = 0; i < n; ++i) {
        graph[i][i] = 0;
    }

    for (int i = 0; i < m; ++i) {
        int u, v, w;
        cin >> u >> v >> w;
        graph[u][v] = w;
    }

    floydWarshall(graph, n);

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            if (graph[i][j] == INF) {
                cout << -1;
            } else {
                cout << graph[i][j];
            }
            if (j != n - 1) {
                cout << " ";
            }
        }
        cout << endl;
    }

    return 0;
}

上述代码使用弗洛伊德算法(Floyd-Warshall算法)来求解有向图中任意两顶点之间的最短路径。

  1. 首先,从输入中读取顶点数 n 和边数 m,并初始化一个 n x n 的二维数组 graph 来表示图,对角线元素初始化为0,其余元素初始化为无穷大。
  2. 然后,根据输入的边信息,将每条边的权重赋值给 graph 数组。
  3. 接着,调用 floydWarshall 函数,通过三重循环来更新 graph 数组,使得 graph[i][j] 表示顶点 i 到顶点 j 的最短路径长度。
  4. 最后,遍历 graph 数组,输出最短路径矩阵,若两顶点之间不连通,则输出 -1。

Dijkstra单源最短路径

题目描述
一个有向图中有 个顶点和 条单向路径 , 请使用Dijkstra算法,求出某一个顶点到其他顶点的最短路径。

Input Format
第一行两个正整数 和 ,分别代表点的数量和路径的数量。 1< <20, 0<= <50

之后 行每行有三个整数 分别表示 路径 的起点、终点序号和路径长度。顶点编号从1开始,0<i,j<=n,0<k<100

源点编号p ,0<p<=n

Output Format
Ⅰ.Dijkstra计算过程;

Ⅱ.输出给定点v到其他各点的路径,以及最短距离。

注意输出格式。橘色点代表空格。CRLF代表换行。

按照Dijkstra算法获取最短路径顺序进行输出,如果没有路径则输出“No Path to ”【顶点编号,升序排列,中间使用空格隔开】

样例输入输出
样例1
输入:
8 10
1 6 10
1 5 5
6 3 1
6 5 2
3 4 4
4 1 7
4 3 6
5 6 3
5 3 9
5 4 2
1
输出:
No.1 : 1 -> 5 , d = 5
No.2 : 1 -> 5 -> 4 , d = 7
No.3 : 1 -> 5 -> 6 , d = 8
No.4 : 1 -> 5 -> 6 -> 3 , d = 9
No.5 : No Path to 2 7 8
问题理解

我们需要实现Dijkstra算法来计算给定有向图中从源点到其他所有顶点的最短路径。具体要求包括:

  1. 输入格式:
    • 第一行:顶点数n和边数m。

    • 接下来m行:每条边的起点、终点和权重。

    • 最后一行:源点编号p。

  2. 输出格式:
    • Dijkstra算法的计算过程。

    • 从源点到其他各顶点的路径及其最短距离。

    • 如果没有路径,则输出“No Path to”以及无法到达的顶点编号(升序排列)。

解决思路

  1. 图的表示:使用邻接表或邻接矩阵存储图。由于顶点数n较小(<20),邻接矩阵更为直观。

  2. Dijkstra算法:
    • 初始化:设置源点到自身的距离为0,其他顶点距离为无穷大。

    • 每次选择当前距离最小的未处理顶点,更新其邻接顶点的距离。

    • 使用优先队列(最小堆)优化选择最小距离顶点的过程。

  3. 路径记录:维护一个前驱数组,记录每个顶点的前驱顶点,以便回溯路径。

  4. 输出格式:
    • 按照Dijkstra算法处理顶点的顺序输出路径和距离。

    • 对于无法到达的顶点,统一输出。

代码实现

#include <iostream>
#include <vector>
#include <queue>
#include <climits>
#include <algorithm>
#include <iomanip>

using namespace std;

const int INF = INT_MAX;

struct Edge {
    int to;
    int weight;
    Edge(int t, int w) : to(t), weight(w) {}
};

struct Vertex {
    int id;
    int distance;
    Vertex(int i, int d) : id(i), distance(d) {}
    bool operator>(const Vertex& other) const {
        return distance > other.distance;
    }
};

void dijkstra(const vector<vector<Edge>>& graph, int source, vector<int>& dist, vector<int>& prev) {
    int n = graph.size();
    dist.assign(n, INF);
    prev.assign(n, -1);
    dist[source] = 0;
    priority_queue<Vertex, vector<Vertex>, greater<Vertex>> pq;
    pq.push(Vertex(source, 0));
    while (!pq.empty()) {
        Vertex current = pq.top();
        pq.pop();
        int u = current.id;
        if (current.distance > dist[u]) continue;
        for (const Edge& edge : graph[u]) {
            int v = edge.to;
            int weight = edge.weight;
            if (dist[v] > dist[u] + weight) {
                dist[v] = dist[u] + weight;
                prev[v] = u;
                pq.push(Vertex(v, dist[v]));
            }
        }
    }
}

void printPath(int v, const vector<int>& prev) {
    if (prev[v] == -1) {
        cout << v;
        return;
    }
    printPath(prev[v], prev);
    cout << " -> " << v;
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<Edge>> graph(n + 1); // 顶点编号从1开始
    for (int i = 0; i < m; ++i) {
        int u, v, w;
        cin >> u >> v >> w;
        graph[u].emplace_back(v, w);
    }
    int source;
    cin >> source;
    vector<int> dist, prev;
    dijkstra(graph, source, dist, prev);
    vector<bool> visited(n + 1, false);
    vector<int> order;
    for (int i = 1; i <= n; ++i) {
        if (dist[i] != INF) {
            order.push_back(i);
        }
    }
    sort(order.begin(), order.end(), [&dist](int a, int b) {
        return dist[a] < dist[b];
    });
    int count = 1;
    for (int v : order) {
        if (v == source) continue;
        cout << "No." << count++ << " : ";
        printPath(v, prev);
        cout << " , d = " << dist[v] << endl;
    }
    vector<int> noPath;
    for (int v = 1; v <= n; ++v) {
        if (dist[v] == INF && v != source) {
            noPath.push_back(v);
        }
    }
    if (!noPath.empty()) {
        cout << "No." << count << " : No Path to ";
        sort(noPath.begin(), noPath.end());
        for (size_t i = 0; i < noPath.size(); ++i) {
            if (i != 0) cout << " ";
            cout << noPath[i];
        }
        cout << endl;
    }
    return 0;
}

代码解释

  1. 数据结构:
    Edge:表示有向边的终点和权重。

    Vertex:用于优先队列,包含顶点编号和当前距离,重载>运算符以实现最小堆。

  2. Dijkstra算法:
    • 初始化距离数组dist和前驱数组prev

    • 使用优先队列选择当前距离最小的顶点,更新邻接顶点的距离和前驱。

    • 如果发现更短的路径,更新距离并加入队列。

  3. 路径输出:
    printPath:递归打印从源点到目标顶点的路径。

    • 主函数中,先处理所有可达顶点,按距离排序后输出路径和距离。

    • 最后处理不可达顶点,升序排列后输出。

  4. 输入输出:
    • 读取顶点数、边数及边信息,构建邻接表。

    • 读取源点,调用Dijkstra算法计算最短路径。

    • 按要求格式输出结果。

示例验证

输入:

8 10
1 6 10
1 5 5
6 3 1
6 5 2
3 4 4
4 1 7
4 3 6
5 6 3
5 3 9
5 4 2
1

输出:

No.1 : 1 -> 5 , d = 5
No.2 : 1 -> 5 -> 4 , d = 7
No.3 : 1 -> 5 -> 6 , d = 8
No.4 : 1 -> 5 -> 6 -> 3 , d = 9
No.5 : No Path to 2 7 8

解释:
• 从顶点1出发,最短路径依次为:

• 1→5(距离5)

• 1→5→4(距离7)

• 1→5→6(距离8)

• 1→5→6→3(距离9)

• 顶点2、7、8无法到达,输出“No Path to 2 7 8”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1234哈哈哈哈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值