目录
⚪在使用开发基于数据库的web程序时,传统的模式基本是按以下步骤:
一、JDBC数据库连接池的必要性
⚪在使用开发基于数据库的web程序时,传统的模式基本是按以下步骤:
- 在主程序(如servlet、beans)中建立数据库连接
- 进行sql操作
- 断开数据库连接
⚪传统模式开发,存在的问题
- 普通的JDBC数据库连接使用 DriverManager 来获取,每次向数据库建立连接的时候都要将 Connection 加载到内存中,再验证用户名和密码(得花费0.05s~1s的时间)。需要数据库连接的时候,就向数据库要求一个,执行完成后再断开连接。这样的方式将会消耗大量的资源和时间。数据库的连接资源并没有得到很好的重复利用。若同时有几百人甚至几千人在线,频繁的进行数据库连接操作将占用很多的系统资源,严重的甚至会造成服务器的崩溃。
- 对于每一次数据库连接,使用完后都得断开。否则,如果程序出现异常而未能关闭,将会导致数据库系统中的内存泄漏,最终将导致重启数据库。
- 这种开发不能控制被创建的连接对象数,系统资源会被毫无顾及的分配出去,如连接过多,也可能导致内 存泄漏,服务器崩溃。
☀Java的内存泄漏?
不再会被使用的对象的内存不能被回收
对象都是有生命周期的,如果长生命周期的对象持有短生命周期的引用,就很可能会出现内存泄露。
(具体参考下文(●ˇ∀ˇ●))
二、数据库连接池技术
为解决传统开发中的数据库连接问题,可以采用数据库连接池技术。
1.数据库连接池的基本思想
为数据库连接建立一个“缓冲池”。预先在缓冲池中放入一定数量的连接,当需要建立数据库连接时,只需从“缓冲池”中取出一个,使用完毕之后再放回去。
数据库连接池负责分配、管理和释放数据库连接,它允许应用程序重复使用一个现有的数据库连接,而不是重新建立一个。
数据库连接池在初始化时将创建一定数量的数据库连接放到连接池中,这些数据库连接的数量是由最小数据库连接数来设定的。无论这些数据库连接是否被使用,连接池都将一直保证至少拥有这么多的连接数量。连接池的最大数据库连接数量限定了这个连接池能占有的最大连接数,当应用程序向连接池请求的连接数超过最大连接数量时,这些请求将被加入到等待队列中。
2.工作原理
3. 数据库连接池技术的优点
1. 资源重用
由于数据库连接得以重用,避免了频繁创建,释放连接引起的大量性能开销。在减少系统消耗的基础上,另一 方面也增加了系统运行环境的平稳性。
2. 更快的系统反应速度
数据库连接池在初始化过程中,往往已经创建了若干数据库连接置于连接池中备用。此时连接的初始化工作均 已完成。对于业务请求处理而言,直接利用现有可用连接,避免了数据库连接初始化和释放过程的时间开销, 从而减少了系统的响应时间
3. 新的资源分配手段
对于多应用共享同一数据库的系统而言,可在应用层通过数据库连接池的配置,实现某一应用最大可用数据库 连接数的限制,避免某一应用独占所有的数据库资源
4. 统一的连接管理,避免数据库连接泄漏
在较为完善的数据库连接池实现中,可根据预先的占用超时设定,强制回收被占用连接,从而避免了常规数据 库连接操作中可能出现的资源泄露
三、多种开源的数据库连接池
- JDBC 的数据库连接池使用 javax.sql.DataSource 来表示,DataSource 只是一个接口,该接口通常由服务器 (Weblogic, WebSphere, Tomcat)提供实现,也有一些开源组织提供实现:
- DBCP 是Apache提供的数据库连接池。tomcat 服务器自带dbcp数据库连接池。速度相对c3p0较快,但因自身存在BUG,不稳定,Hibernate3已不再提供支持。
- C3P0 是一个开源组织提供的一个数据库连接池,速度相对较慢,稳定性较好。hibernate官方推荐使用
- Proxool 是sourceforge下的一个开源项目数据库连接池,有监控连接池状态的功能,稳定性较c3p0差一 点
- BoneCP 是一个开源组织提供的数据库连接池,速度快
- Druid 是阿里提供的数据库连接池,据说是集DBCP 、C3P0 、Proxool 优点于一身的数据库连接池,但是,速度不确定是否有BoneCP快
- DataSource 通常被称为数据源,它包含连接池和连接池管理两个部分,习惯上也经常把 DataSource 称为连接池
- DataSource用来取代DriverManager来获取Connection,获取速度快,同时可以大幅度提高数据库访问速度。
注意
- 数据源和数据库连接不同,数据源无需创建多个,它是产生数据库连接的工厂,因此整个应用只需要一个数据源即可。
- 当数据库访问结束后,程序还是像以前一样关闭数据库连接:conn.close(); 但conn.close()并没有关闭数据库的物理连接,它仅仅把数据库连接释放,归还给了数据库连接池。
四、C3P0数据库连接池
方式一:
@Test
public void testGetConnection() throws PropertyVetoException, SQLException {
//获取C3P0数据库连接池
ComboPooledDataSource cpds = new ComboPooledDataSource();
cpds.setDriverClass( "com.mysql.cj.jdbc.Driver" ); //driver的具体路径
cpds.setJdbcUrl( "jdbc:mysql://localhost:3306/atguigudb?useUnicode=true&characterEncoding=utf-8" );
cpds.setUser("root");
cpds.setPassword("123456");
//通过设置相关的参数,对数据库连接池进行管理
//设置初始时数据库连接池中的连接数
cpds.setInitialPoolSize(10);
Connection conn = cpds.getConnection();
System.out.println(conn);
//销毁C3P0连接池
DataSources.destroy(cpds);
}
方式二:使用配置文件:
<?xml version="1.0" encoding="ISO-8859-1"?>
<c3p0-config>
<name-config name="helloc3p0">
<!-- 提供获取连接的4个基本信息 -->
<property name="driverClass">com.mysql.cj.jdbc.Driver</property>
<property name="jdbcURL">jdbc:mysql://localhost:3306/atguigudb?useUnicode=true&characterEncoding=utf-8&rewriteBatchedStatements=true</property>
<property name="user">root</property>
<property name="password">132456</property>
<!-- 进行数据库连接池管理的基本信息 -->
<!-- 当数据库连接池中的连接数不够时,c3p0一次性向数据库服务器申请的连接数 -->
<property name="acquireIncrement">5</property>
<!-- c3p0数据库连接池中初始化时的连接数 -->
<property name="initialPoolSize">10</property>
<!-- c3p0数据库连接池维护的最少连接数 -->
<property name="minPoolSize">10</property>
<!-- c3p0数据库连接池维护的最多的连接数 -->
<property name="maxPoolSize">100</property>
<!-- c3p0数据库连接池最多维护的Statement的个数 -->
<property name="maxStatements">50</property>
<!-- c3p0数据库连接池每个连接中最多使用的Statement的个数 -->
<property name="maxStatementsPerConnection">2</property>
</name-config>
</c3p0-config>
@Test
public void testGetConnection1() throws SQLException {
ComboPooledDataSource cpds = new ComboPooledDataSource("helloc3p0");
Connection conn = cpds.getConnection();
System.out.println(conn);
}
五、测试DBCP的数据库连接池技术
🐟dbcp连接池常用基本配置属性
- initialSize :连接池启动时创建的初始化连接数量(默认值为0)
- maxActive :连接池中可同时连接的最大的连接数(默认值为8,调整为20,高峰单机器在20并发左右,自己根据应用场景定)
- maxIdle:连接池中最大的空闲的连接数,超过的空闲连接将被释放,如果设置为负数表示不限制(默认为8个,maxIdle不能设置太小,因为假如在高负载的情况下,连接的打开时间比关闭的时间快,会引起连接池中idle的个数 上升超过maxIdle,而造成频繁的连接销毁和创建,类似于jvm参数中的Xmx设置)
- minIdle:连接池中最小的空闲的连接数,低于这个数量会被创建新的连接(默认为0,调整为5,该参数越接近maxIdle,性能越好,因为连接的创建和销毁,都是需要消耗资源的;但是不能太大,因为在机器很空闲的时候,也会创建低于minidle个数的连接,类似于jvm参数中的Xmn设置)
- maxWait :最大等待时间,当没有可用连接时,连接池等待连接释放的最大时间,超过该时间限制会抛出异常,如果设置-1表示无限等待(默认为无限,调整为60000ms,避免因线程池不够用,而导致请求被无限制挂起)
- poolPreparedStatements:开启池的prepared(默认是false,未调整,经过测试,开启后的性能没有关闭的好。)
- maxOpenPreparedStatements:开启池的prepared 后的同时最大连接数(默认无限制,同上,未配置)
- minEvictableIdleTimeMillis :连接池中连接,在时间段内一直空闲, 被逐出连接池的时间
- removeAbandonedTimeout :超过时间限制,回收没有用(废弃)的连接(默认为 300秒,调整为180)
- removeAbandoned :超过removeAbandonedTimeout时间后,是否进 行没用连接(废弃)的回收(默认为false,调整为true)
1.方式一
@Test
public void testGetConnection() throws SQLException {
//创建了DBCP的数据库连接池
BasicDataSource source = new BasicDataSource();
//设置基本信息
source.setDriverClassName("com.mysql.cj.jdbc.Driver");
source.setUrl("jdbc:mysql://localhost:3306/atguigudb?useUnicode=true&characterEncoding=utf-8&rewriteBatchedStatements=true");
source.setUsername("root");
source.setPassword("123456");
//还可以设置其它涉及数据库连接池管理的相关属性
source.setInitialSize(10);
source.setMaxActive(10);
//......
Connection conn = source.getConnection();
System.out.println(conn);
}
2.方式二 :使用配置文件
driverClassName=com.mysql.cj.jdbc.Driver
url=jdbc:mysql://localhost:3306/atguigudb?useUnicode=true&characterEncoding=utf-8&rewriteBatchedStatements=true
username=root
password=123456
//方式二:使用配置文件(推荐使用)
@Test
public void testGetConnection1() throws Exception {
Properties pros = new Properties();
//方式一:
// InputStream is = ClassLoader.getSystemClassLoader().getResourceAsStream("dbcp.properties");
//方式二:
FileInputStream is = new FileInputStream(new File("src/dbcp.properties"));
pros.load(is);
DataSource source = BasicDataSourceFactory.createDataSource(pros);
Connection conn = source.getConnection();
System.out.println(conn);
}
六、Druid数据库连接池技术的实现
Druid是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0、DBCP、Proxool等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB连接池,可以说是目前最好的连接池之一。
druid.properties
driverClassName=com.mysql.cj.jdbc.Driver
url=jdbc:mysql://localhost:3306/atguigudb?useUnicode=true&characterEncoding=utf-8&rewriteBatchedStatements=true
username=root
password=123456
initialSize=10
maxActive=10
@Test
public void getConnection() throws Exception {
Properties pros = new Properties();
InputStream is = ClassLoader.getSystemClassLoader().getResourceAsStream("druid.properties");
pros.load(is);
DataSource source = DruidDataSourceFactory.createDataSource(pros);
Connection conn = source.getConnection();
System.out.println(conn);
}