【Linux】达梦数据库安装部署(附详细图文)

目录

一、安装前的准备工作

1.检查操作系统配置

(1)获取系统位数 getconf LONG_BIT

(2)查看操作系统release信息 cat /etc/system-release

(3)查询系统名称 uname -a

(4)查看操作系统CPU信息 lscpu

2. 创建安装用户

(1)创建安装用户组 dinstall

(2)创建安装用户 dmdba。

(3)初始化用户密码

3.检查系统操作限制(一般可忽略)

4.检查系统内存与存储空间

二、达梦下载地址

三、安装达梦

1.安装前的准备工作

2.命令行安装

(1)切换dmdba用户

(2)切换到/data/dm8目录

(3)执行安装命令

 (4)切换root账号并执行命令

 四、初始化达梦数据库

五、使用脚本自动注册服务

六、遇到的问题

1.检查前台方式启动达梦数据库是否成功

2.检查dm的安装目录是否属于dmdba用户和dinstall用户组

 3.再次执行注册服务,并启动

4.通过注册脚本将dm服务注册到系统服务


一、安装前的准备工作

用户在安装 DM 之前需要检查操作系统的配置,以保证 DM 正确安装和运行。

本文档适用于银河麒麟操作系统(Kylin V10_SP3)并且架构是aarch64。由于不同操作系统系统命令不尽相同,具体步骤及操作请以本机系统为准。

1.检查操作系统配置

(1)获取系统位数 getconf LONG_BIT
(2)查看操作系统release信息 cat /etc/system-release
(3)查询系统名称 uname -a
(4)查看操作系统CPU信息 lscpu

按照自己操作系统的配置下载相关DM数据库的安装包。

从上面信息可以看出操作系统:Kylin 10,架构:aarch64,芯片:鲲鹏920。

2. 创建安装用户

(1)创建安装用户组 dinstall

groupadd -g 12349 dinstall  

-g 12349:表示设置用户组的id(12349)

(2)创建安装用户 dmdba。

useradd -u 12345 -g dinstall -m -d /home/dmdba -s /bin/bash dmdba

  • -u 12345:指定用户的用户ID为 12345。
  • -g dinstall:将用户添加到 dinstall 用户组中。
  • -m:在创建用户时自动创建用户的家目录。
  • -d /home/dmdba:指定用户的家目录为 /home/dmdba。
  • -s /bin/bash:指定用户的登录 shell 为 /bin/bash。

最后的 dmdba 是要创建的用户名。

(3)初始化用户密码

passwd dmdba

3.检查系统操作限制(一般可忽略)

在 Linux(Unix)系统中,因为 ulimit 命令的存在,会对程序使用操作系统资源进行限制。为了使 DM 能够正常运行,建议用户检查当前安装用户的 ulimit 参数。

运行 ulimit -a 进行查询。如下图所示:

参数使用限制:

  • data seg size

data seg size (kbytes, -d)

建议用户设置为 1048576(即 1GB)以上或 unlimited(无限制),此参数过小将导致数据库启动失败。

  • file size

file size(blocks, -f)

建议用户设置为 unlimited(无限制),此参数过小将导致数据库安装或初始化失败。

  • open files

open files(-n)

建议用户设置为 65536 以上或 unlimited(无限制)。

  • virtual memory

virtual memory (kbytes, -v)

建议用户设置为 1048576(即 1GB)以上或 unlimited(无限制),此参数过小将导致数据库启动失败。

如果用户需要为当前安装用户更改 ulimit 的资源限制,请修改文件/etc/security/limits.conf。

 每一行定义了一个限制,格式如下:

<domain>   <type> <item>    <value>
  • <domain> 可以是用户名或用户组。具体如下图:

  • <type> 可以是 softhard-
  • <item&g
<think>嗯,用户想知道怎么用Mann-Kendall趋势检验和Sen斜率估计法来分析鄱阳湖流域的气温和降水的时空变化特征。首先,我得回忆一下这两种方法的基本原理和应用步骤。Mann-Kendall(MK)检验是一种非参数检验方法,用来判断时间序列数据是否有显著的趋势,而Sen斜率估计则是用来计算趋势的大小,即斜率。两者结合的话,可以既检测趋势是否存在,又能量化趋势的幅度。 首先,用户可能需要了解数据准备的步骤。比如,需要收集长时间序列的气温和降水数据,可能按月或者年尺度,然后整理成时间序列格式。数据预处理可能包括处理缺失值、异常值,因为Sen斜率对异常值不敏感,但MK检验对数据的平稳性有要求,可能需要去除季节性因素,比如进行年际分析或者月平均处理。 接下来是Sen斜率的计算。根据引用[2]里的公式,斜率是两两数据点的差值除以时间差的中位数。这里需要遍历所有数据点对,计算每对的斜率,然后取中位数。这样得到的斜率可以反映整体趋势的方向和大小。例如,气温的Sen斜率为正表示上升趋势,负则为下降。 然后是MK检验的步骤。MK统计量S的计算涉及到比较每个点与其后续点的大小,统计正负差异的数量。然后根据S的符号和大小来判断趋势的方向和显著性。还需要计算方差,以便得到标准化的Z值,进而判断p值是否小于显著性水平(如0.05)。如果Z值为正且p值显著,说明有上升趋势,反之则下降。 时空特征分析方面,可能需要将流域划分为不同区域,比如上中下游,或者不同的土地利用类型区,分别计算各区域的Sen斜率和MK检验结果。这样可以在空间上展示趋势的变化,比如某些区域气温上升更快,降水变化更明显。时间上,可以分不同时间段分析,比如近20年和过去50年的趋势差异,或者季节性的变化特征。 用户可能需要具体的实现方法,比如Python代码示例。根据引用[1]和[2]提到的Theil-Sen和MK的实现,可以引用现有的库,如scipy的stats模块中的kendalltau函数,或者自己编写Sen斜率的计算代码。比如,用numpy处理数据,计算所有两两组合的斜率,再取中位数。对于MK检验,除了计算S,还需要处理结(相同值的情况),并计算方差,这可能比较复杂,需要参考标准的MK检验步骤。 此外,结果的可视化也很重要,比如绘制Sen斜率空间分布图和MK检验的显著性分布图,可以用matplotlib或GIS工具来展示。用户可能需要知道如何解释这些图,比如哪些区域的气温变化显著,降水趋势如何等。 用户的问题还提到了鄱阳湖流域的具体应用,可能需要考虑该地区的地理和气候特点,比如季风影响、湖泊效应等,这些因素可能在分析结果时需要考虑进去。例如,降水的变化可能与季风强度变化有关,气温趋势可能与城市化进程相关。 最后,用户可能需要了解这些方法的优缺点,比如Sen斜率对异常值的稳健性,MK检验的非参数特性使其不依赖于数据分布,但可能存在季节性影响需要处理。此外,长时间序列数据的获取和处理可能是一个挑战,特别是气象数据的质量和连续性。 总结一下,回答的结构应该是先介绍方法步骤,然后给出数据处理的建议,接着是具体计算和检验的过程,再是时空分析的方法,最后是结果展示和实际应用的示例。同时,提供代码示例和可视化方法会更有帮助,确保用户能够实际操作和应用。</think>### 使用Mann-Kendall趋势检验和Sen斜率估计法分析鄱阳湖流域时空变化的方法示例 #### 1. **数据准备与预处理** - **数据要求**: 需长时间序列的气温、降水数据(如年/月尺度),覆盖鄱阳湖流域多个站点或栅格单元[^2]。 - **预处理**: - 缺失值插补(线性插值或邻近站点填充) - 数据标准化(如去除季节性影响) - 空间聚合(若为栅格数据,按流域划分区域) #### 2. **Sen斜率估计** - **公式**: $$ \text{slope} = \text{Median}\left( \frac{x_j - x_i}{j-i} \right) \quad (i < j) $$ 其中$x_i$为第$i$时间点的观测值。 - **Python实现**: ```python import numpy as np def sen_slope(y): n = len(y) slopes = [] for i in range(n): for j in range(i+1, n): slopes.append((y[j] - y[i]) / (j - i)) return np.median(slopes) ``` #### 3. **Mann-Kendall趋势检验** - **统计量计算**: $$ S = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \text{sgn}(x_j - x_i) $$ $$ \text{Var}(S) = \frac{n(n-1)(2n+5)}{18} $$ 若$|Z| > Z_{1-\alpha/2}$(如1.96对应$\alpha=0.05$),则趋势显著。 - **Python实现**: ```python from scipy.stats import norm def mann_kendall(y): n = len(y) s = 0 for i in range(n-1): for j in range(i+1, n): s += np.sign(y[j] - y[i]) var_s = (n*(n-1)*(2*n+5))/18 z = s / np.sqrt(var_s) if s !=0 else 0 p = 2*(1 - norm.cdf(abs(z))) return z, p ``` #### 4. **时空特征分析** - **时间维度**: - 分阶段分析(如2000-2010 vs 2010-2020) - 季节性差异(夏季降水趋势 vs 冬季气温趋势) - **空间维度**: - 栅格数据:逐像元计算Sen斜率与MK检验结果 - 站点数据:空间插值生成趋势分布图 #### 5. **结果展示示例** - **表格**: 各站点Sen斜率与MK检验结果 | 站点 | 气温Sen斜率(℃/年) | MK-Z值 | 降水Sen斜率(mm/年) | MK-Z值 | |---|---|---|---|---| | 南昌 | 0.032* | 2.15 | -1.2 | -0.87 | | 九江 | 0.028* | 1.98 | 0.6 | 0.42 | - **可视化**: - 空间分布图:用颜色深浅表示Sen斜率大小,符号标注显著性(如★表示p<0.05) - 时间序列图:叠加趋势线展示典型站点变化 #### 6. **实际应用建议** - **数据选择**: 建议使用CRU、ERA5再分析数据或地面观测站数据 - **验证方法**: 结合其他统计方法(如线性回归)交叉验证 - **影响因素**: 需关联土地利用变化、人类活动等辅助数据分析趋势成因
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值