【题解】—— LeetCode一周小结5

🌟欢迎来到 我的博客 —— 探索技术的无限可能!


🌟博客的简介(文章目录)


【题解】—— 每日一道题目栏


上接:【题解】—— LeetCode一周小结4

29.自由之路

题目链接:514. 自由之路

电子游戏“辐射4”中,任务 “通向自由” 要求玩家到达名为 “Freedom Trail Ring” 的金属表盘,并使用表盘拼写特定关键词才能开门。

给定一个字符串 ring ,表示刻在外环上的编码;给定另一个字符串 key ,表示需要拼写的关键词。您需要算出能够拼写关键词中所有字符的最少步数。

最初,ring 的第一个字符与 12:00 方向对齐。您需要顺时针或逆时针旋转 ring 以使 key 的一个字符在 12:00 方向对齐,然后按下中心按钮,以此逐个拼写完 key 中的所有字符。

旋转 ring 拼出 key 字符 key[i] 的阶段中:

  1. 您可以将 ring 顺时针或逆时针旋转 一个位置 ,计为1步。旋转的最终目的是将字符串 ring 的一个字符与 12:00 方向对齐,并且这个字符必须等于字符 key[i] 。
  2. 如果字符 key[i] 已经对齐到12:00方向,您需要按下中心按钮进行拼写,这也将算作 1 步。按完之后,您可以开始拼写 key 的下一个字符(下一阶段), 直至完成所有拼写。

示例 1:

请添加图片描述

解释:

对于 key 的第一个字符 ‘g’,已经在正确的位置, 我们只需要1步来拼写这个字符。
对于 key 的第二个字符’d’,我们需要逆时针旋转 ring “godding” 2步使它变成 “ddinggo”。
当然, 我们还需要1步进行拼写。
因此最终的输出是 4。

示例 2:

输入: ring = “godding”, key = “godding”

输出: 13

提示:

1 <= ring.length, key.length <= 100

ring 和 key 只包含小写英文字母

保证 字符串 key 一定可以由字符串 ring 旋转拼出

题解
方法:动态规划
        我们用 dp[i][j] 表示从游戏开始到拼接完成 key[0:i] 在 ring[j]==key[i] 的时候最小步数,所以 dp 的最大长度是 dp[key.length][ring.length]

        什么是:在 ring[j]==key[i] 的时候最小步数?请添加图片描述
这是本题的难点所在,因为存在重复字符串,所以我们把所有重复的位置都考虑到。

        比如一下情况:

        ring=“ababac”
        key=“ab”

        第一步 我们先开始拼接 a,我们要把 ring 中每一个a都计算到

        计算的结果是:

        dp[0][0]=1
        dp[0][2]=3
        dp[0][4]=4

        为什么出现上面三个结果,因为 ring 中总共有三个 a,比如 dp[0][4] 的第二维度 4 表示 a 在 ring 中的下标。

        第二步 我们开始算 b,上一步指针停留的位置必然是某个 a 的位置,我们无法知道哪个 a 的位置更优,所以都考虑到,也就是说我们对于上个每一个 a 得位置和现在每一个 b 得位置 都要计算。

        比如对于在位置 1 的 b,我们要算 dp[1][1]=min(dp[0][0]+m+1,dp[0][2]+m+1,dp[0][4]+m+1)

        其中 m 是两个位置的距离

        比如对于在位置 2 的 b,我们要算 dp[1][3]=min(dp[0][0]+m+1,dp[0][2]+m+1,dp[0][4]+m+1)

        下图是上述的所以搜索路径

        最后答案是所有的 dp[1][index(a)] 的最小值。
        我们可以开始用和哈希表来保存每一个字符在 ring 中所有出现位置,来节约时间

class Solution {
    Map<Character,List<Integer>> mp;
    int[][] dp;
    public int findRotateSteps(String ring, String key) {
        int rl=ring.length();
        int kl=key.length();
        if(kl==0) return 0;
        char[] r=ring.toCharArray();
        char[] k=key.toCharArray();
        mp = new HashMap<>();
        for(int i=0;i<rl;i++){//保存字符出现的位置
            if(mp.containsKey(r[i])){
                mp.get(r[i]).add(i);
            }
            else{
                List<Integer> next= new ArrayList<>();
                next.add(i);
                mp.put(r[i],next);
            }
        }
        dp = new int[kl][rl];
        List<Integer> next2 = mp.get(k[0]);
        Iterator<Integer> it2 = next2.iterator();
        while(it2.hasNext()){
            int c = it2.next();
            int m = Math.min(c,rl-c);//找到每个位置
            dp[0][c]=m+1;
        }
        for(int i=1;i<kl;i++){

            List<Integer> next = mp.get(k[i]);
            Iterator<Integer> it = next.iterator();
            while(it.hasNext()){
                int c = it.next();//找到本次的所有位置
                int min=Integer.MAX_VALUE;
                List<Integer> next1 = mp.get(k[i-1]);
                Iterator<Integer> it1 = next1.iterator();
                while(it1.hasNext()){
                    int d = it1.next();//找到上个字符所有的位置来计算
                    int m = Math.min(rl-c+d,rl-d+c);
                    m = Math.min(m,Math.abs(c-d));
                    min=Math.min(min,dp[i-1][d]+m+1);
                    
                }
                dp[i][c]=min;
            }
        }
        int ans=Integer.MAX_VALUE;
        List<Integer> next = mp.get(k[kl-1]);
        Iterator<Integer> it = next.iterator();
        while(it.hasNext()){
            ans=Math.min(ans,dp[kl-1][it.next()]);
        }
        return ans;
        
        
    }
    
}

30.使循环数组所有元素相等的最少秒数

题目链接:2808. 使循环数组所有元素相等的最少秒数

给你一个下标从 0 开始长度为 n 的数组 nums 。

每一秒,你可以对数组执行以下操作:

对于范围在 [0, n - 1] 内的每一个下标 i ,将 nums[i] 替换成 nums[i] ,nums[(i - 1 + n) % n] 或者 nums[(i + 1) % n] 三者之一。
注意,所有元素会被同时替换。

请你返回将数组 nums 中所有元素变成相等元素所需要的 最少 秒数。

示例 1:

输入:nums = [1,2,1,2]

输出:1

解释:我们可以在 1 秒内将数组变成相等元素:

  • 第 1 秒,将每个位置的元素分别变为 [nums[3],nums[1],nums[3],nums[3]] 。变化后,nums = [2,2,2,2] 。

1 秒是将数组变成相等元素所需要的最少秒数。

示例 2:

输入:nums = [2,1,3,3,2]

输出:2

解释:我们可以在 2 秒内将数组变成相等元素:

  • 第 1 秒,将每个位置的元素分别变为 [nums[0],nums[2],nums[2],nums[2],nums[3]] 。变化后,nums = [2,3,3,3,3] 。
  • 第 2 秒,将每个位置的元素分别变为 [nums[1],nums[1],nums[2],nums[3],nums[4]] 。变化后,nums = [3,3,3,3,3] 。

2 秒是将数组变成相等元素所需要的最少秒数。

示例 3:

输入:nums = [5,5,5,5]

输出:0

解释:不需要执行任何操作,因为一开始数组中的元素已经全部相等。

提示:

1 <= n == nums.length <= 105

1 <= nums[i] <= 109

题解
方法:把问题看成是【扩散】元素
        
提示 1

最终所有元素一定变成了一个在 nums 中的数。

枚举这个数。

提示 2

考虑把数字 x 扩散到其它位置,那么每一秒 x 都可以向左右扩散一位。

多个相同数字 x 同时扩散,那么扩散完整个数组的耗时,就取决于相距最远的两个相邻的 x。

假设这两个 x 的下标分别为 i 和 j,且 i<j,那么耗时为:

⌊(j−i)/2⌋不同的 x,计算相应的耗时,更新答案的最小值。

提示 3

统计所有相同数字的下标,记到一个哈希表 pos 中。

本题数组可以视作是环形的,假设最左边的 x 的下标是 i,只需要在 pos[x] 列表末尾添加一个 i+n,就可以转换成非环形数组处理了。

public class Solution {
    public int minimumSeconds(List<Integer> nums) {
        int n = nums.size();
        Map<Integer, List<Integer>> pos = new HashMap<>();
        for (int i = 0; i < n; i++) {
            pos.computeIfAbsent(nums.get(i), k -> new ArrayList<>()).add(i);
        }

        int ans = n;
        for (List<Integer> a : pos.values()) {
            a.add(a.get(0) + n);
            int mx = 0;
            for (int i = 1; i < a.size(); ++i) {
                mx = Math.max(mx, (a.get(i) - a.get(i - 1)) / 2);
            }
            ans = Math.min(ans, mx);
        }
        return ans;
    }
}

31.找出不同元素数目差数组

题目链接:2670. 找出不同元素数目差数组

给你一个下标从 0 开始的数组 nums ,数组长度为 n 。

nums 的 不同元素数目差 数组可以用一个长度为 n 的数组 diff 表示,其中 diff[i] 等于前缀 nums[0, …, i] 中不同元素的数目 减去 后缀 nums[i + 1, …, n - 1] 中不同元素的数目。

返回 nums 的 不同元素数目差 数组。

注意 nums[i, …, j] 表示 nums 的一个从下标 i 开始到下标 j 结束的子数组(包含下标 i 和 j 对应元素)。特别需要说明的是,如果 i > j ,则 nums[i, …, j] 表示一个空子数组。

示例 1:

输入:nums = [1,2,3,4,5]

输出:[-3,-1,1,3,5]

解释:

对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 4 个不同的元素。因此,diff[0] = 1 - 4 = -3 。

对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。

对于 i = 2,前缀中有 3 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 3 - 2 = 1 。

对于 i = 3,前缀中有 4 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 4 - 1 = 3 。

对于 i = 4,前缀中有 5 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 5 - 0 = 5 。

示例 2:

输入:nums = [3,2,3,4,2]

输出:[-2,-1,0,2,3]

解释:

对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[0] = 1 - 3 = -2 。

对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。

对于 i = 2,前缀中有 2 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 2 - 2 = 0 。

对于 i = 3,前缀中有 3 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 3 - 1 = 2 。

对于 i = 4,前缀中有 3 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 3 - 0 = 3 。

提示:

1 <= n == nums.length <= 50

1 <= nums[i] <= 50

题解
方法:O(n) 前后缀分解
        先倒序枚举 nums,并记录每个后缀的不同元素个数到 suf 数组中,这可以用哈希表做到。

然后正序枚举 nums[i],同样地,记录每个前缀的不同元素个数,减去 suf[i+1],即为答案。

class Solution {
    public int[] distinctDifferenceArray(int[] nums) {
        int n = nums.length;
        var suf = new int[n + 1];
        var s = new HashSet<Integer>();
        for (int i = n - 1; i > 0; i--) {
            s.add(nums[i]);
            suf[i] = s.size();
        }

        s.clear();
        var ans = new int[n];
        for (int i = 0; i < n; i++) {
            s.add(nums[i]);
            ans[i] = s.size() - suf[i + 1];
        }
        return ans;
    }
}

2024.2

1.数字游戏

题目链接:LCP 24. 数字游戏

小扣在秋日市集入口处发现了一个数字游戏。主办方共有 N 个计数器,计数器编号为 0 ~ N-1。每个计数器上分别显示了一个数字,小扣按计数器编号升序将所显示的数字记于数组 nums。每个计数器上有两个按钮,分别可以实现将显示数字加一或减一。小扣每一次操作可以选择一个计数器,按下加一或减一按钮。

主办方请小扣回答出一个长度为 N 的数组,第 i 个元素(0 <= i < N)表示将 0~i 号计数器 初始 所示数字操作成满足所有条件 nums[a]+1 == nums[a+1],(0 <= a < i) 的最小操作数。回答正确方可进入秋日市集。

由于答案可能很大,请将每个最小操作数对 1,000,000,007 取余。

示例 1:

输入:nums = [3,4,5,1,6,7]

输出:[0,0,0,5,6,7]

解释: i = 0,[3] 无需操作 i = 1,[3,4] 无需操作; i = 2,[3,4,5] 无需操作; i = 3,将
[3,4,5,1] 操作成 [3,4,5,6], 最少 5 次操作; i = 4,将 [3,4,5,1,6] 操作成
[3,4,5,6,7], 最少 6 次操作; i = 5,将 [3,4,5,1,6,7] 操作成 [3,4,5,6,7,8],最少 7
次操作; 返回 [0,0,0,5,6,7]。

示例 2:

输入:nums = [1,2,3,4,5]

输出:[0,0,0,0,0]

解释:对于任意计数器编号 i 都无需操作。

示例 3:

输入:nums = [1,1,1,2,3,4]

输出:[0,1,2,3,3,3]

解释:
i = 0,无需操作; i = 1,将 [1,1] 操作成 [1,2] 或 [0,1] 最少 1 次操作; i = 2,将
[1,1,1] 操作成 [1,2,3] 或 [0,1,2],最少 2 次操作; i = 3,将 [1,1,1,2] 操作成
[1,2,3,4] 或 [0,1,2,3],最少 3 次操作; i = 4,将 [1,1,1,2,3] 操作成
[-1,0,1,2,3],最少 3 次操作; i = 5,将 [1,1,1,2,3,4] 操作成 [-1,0,1,2,3,4],最少 3
次操作; 返回 [0,1,2,3,3,3]。

提示:

1 <= nums.length <= 105

1 <= nums[i] <= 103

题解
方法:求数据流的中位数
        下文中所有 “数组 nums 的前 i 个元素” 均指 nums[0] 到 nums[i] 的 i + 1 个元素

        题目中要求满足 nums[a] + 1 == nums[a + 1] , 等价于满足 nums[a] - a == nums[a + 1] - (a + 1), 所以我们可以先对数组进行预处理, 将每个nums[i] 替换为 nums[i] - i, 问题就变成寻找最小的操作次数使得数组的前 i 个元素相等, 假设操作后得到的这个相等的元素为 median[i], 即:

median[i]={argmin_x} ∑ j − 0 i ∣ n u m s [ j ] − x ∣ \sum\limits_{j-0}^i\lvert nums[j]−x\rvert j0inums[j]x

        那么当前有奇数个元素时, median[i] 必然是数组前 i 个元素的中位数, 有偶数个元素时 median[i] 则可以是排序后最中间两个数构成的区间内的任意一个值 (不理解这一点的可以画一个数轴感受一下), 所以我们可以利用 295. 数据流的中位数 中维护两个堆的方法快速求出 nums 数组前 i 个元素的中位数.

        求得中位数后, 如果直接遍历 [0, i] 求需要的操作次数会超时, 所以我们将求中位数的算法稍加修改, 维护数据流较小的一半的和 maxSum (即小于中位数的所有数之和) 与较大的一半的和 minSum (即大于等于中位数的所有数之和), 即:

minSum = ∑ j = 0 ⋯ i , n u m s [ j ] ≥ m e d i a n [ i ]   n u m s [ j ] \sum\limits_{j=0⋯i,nums[j]≥median[i]}\ {nums[j]} j=0i,nums[j]median[i] nums[j]

maxSum= ∑ j = 0 ⋯ i , n u m s [ j ] < m e d i a n [ i ]   n u m s [ j ] \sum\limits_{j=0⋯i,nums[j]<median[i]}\ {nums[j]} j=0i,nums[j]<median[i] nums[j]

所以:

∑ j − 0 i ∣ n u m s [ j ] − m e d i a n [ i ] ∣ \sum\limits_{j-0}^i\lvert nums[j]−median[i]\rvert j0inums[j]median[i]∣ = minSum − card({j∣nums[j]≥median[i],0≤j≤i})×median[i]+(card({j∣nums[j]<median[i],0≤j≤i})×median[i]−maxSum)

这样我们就不用数据流中每加入一个元素后重新求和, 从而以 O(nlogn) 复杂度解决问题.

注意代码中 minHeap 代表的小顶堆维护的是数据流较大的一半, 而 maxHeap 则是较小的一半.

class Solution {
    public int[] numsGame(int[] nums) {
        int n = nums.length;
        int[] result = new int[n];
        for (int i = 0; i < n; i++)
            nums[i] -= i;
        result[0] = 0;
        MedianFinder finder = new MedianFinder();
        finder.addNum(nums[0]);
        for (int i = 1; i < n; i++) {
            finder.addNum(nums[i]);
            int median = finder.findMedian();
            long value = finder.minSum - (long) (finder.minHeap.size() - 1) * (long) median
                    + ((long) (finder.maxHeap.size() - 1) * (long) median - finder.maxSum);
            result[i] = (int) (value % 1000000007);
        }
        return result;
    }
}

class MedianFinder {
    PriorityQueue<Integer> minHeap, maxHeap;
    long minSum = 0, maxSum = 0;

    public MedianFinder() {
        minHeap = new PriorityQueue<>();
        maxHeap = new PriorityQueue<>(1, (x, y) -> {
            long result = (long) y - (long) x;
            if (result > 0)
                return 1;
            if (result < 0)
                return -1;
            return 0;
        });
        minHeap.add(Integer.MAX_VALUE);
        maxHeap.add(Integer.MIN_VALUE);
    }

    private void adjust() {
        int maxSize = maxHeap.size(), minSize = minHeap.size();
        if (maxSize - minSize >= 2) {
            int num = maxHeap.poll();
            maxSum -= num;
            minHeap.add(num);
            minSum += num;
        } else if (minSize - maxSize >= 2) {
            int num = minHeap.poll();
            minSum -= num;
            maxHeap.add(num);
            maxSum += num;
        }
    }

    public void addNum(int num) {
        int lowerMax = maxHeap.peek();
        if (num <= lowerMax) {
            maxHeap.add(num);
            maxSum += num;
        } else {
            minHeap.add(num);
            minSum += num;
        }
        adjust();
    }

    public int findMedian() {
        if (maxHeap.size() > minHeap.size())
            return maxHeap.peek();
        else
            return minHeap.peek();
    }
}


2.石子游戏 VI

题目链接:1686. 石子游戏 VI

Alice 和 Bob 轮流玩一个游戏,Alice 先手。

一堆石子里总共有 n 个石子,轮到某个玩家时,他可以 移出 一个石子并得到这个石子的价值。Alice 和 Bob 对石子价值有 不一样的的评判标准 。双方都知道对方的评判标准。

给你两个长度为 n 的整数数组 aliceValues 和 bobValues 。aliceValues[i] 和 bobValues[i] 分别表示 Alice 和 Bob 认为第 i 个石子的价值。

所有石子都被取完后,得分较高的人为胜者。如果两个玩家得分相同,那么为平局。两位玩家都会采用 最优策略 进行游戏。

请你推断游戏的结果,用如下的方式表示:

  • 如果 Alice 赢,返回 1 。
  • 如果 Bob 赢,返回 -1 。
  • 如果游戏平局,返回 0 。

示例 1:

输入:aliceValues = [1,3], bobValues = [2,1]

输出:1

解释:

如果 Alice 拿石子 1 (下标从 0开始),那么 Alice 可以得到 3 分。Bob 只能选择石子 0 ,得到 2 分。Alice
获胜。

示例 2:

输入:aliceValues = [1,2], bobValues = [3,1]

输出:0

解释:

Alice 拿石子 0 , Bob 拿石子 1 ,他们得分都为 1 分。打平。

示例 3:

输入:aliceValues = [2,4,3], bobValues = [1,6,7]

输出:-1

解释:
不管 Alice 怎么操作,Bob 都可以得到比 Alice 更高的得分。 比方说,Alice 拿石子 1 ,Bob 拿石子 2,Alice 拿石子 0 ,Alice 会得到 6 分而 Bob 得分为 7 分。 Bob 会获胜。

提示:

n == aliceValues.length == bobValues.length

1 <= n <= 105

1 <= aliceValues[i], bobValues[i] <= 100

题解
方法:博弈
        在游戏进行的过程中,想要本轮自己的得分最优化,要同时考虑自己能够获得尽可能多得分,并且可以让对手损失尽可能多的得分。令 values[i]=aliceValues[i]+bobValues[i],values[x] 大,意味着自己可以获得对二者而言均比较大的石头,正好可以满足目标:自己的收益和让对方的损失权衡下来最大化。先对 values 逆序排序,两人轮流顺序取当前得分和对应的石头即可(对二者而言这么取都是最有利于自己的)。

class Solution {
    public int stoneGameVI(int[] aliceValues, int[] bobValues) {
        int n = aliceValues.length;
        List<int[]> value = new ArrayList<>();
        for (int i = 0; i < n; i++)
            value.add(new int[] {i, aliceValues[i] + bobValues[i]});
        value.sort((x, y) -> y[1] - x[1]);
        int total = 0;
        for (int i = 0; i < n; i++)
            total += i % 2 == 0 ? aliceValues[value.get(i)[0]] : -bobValues[value.get(i)[0]];
        return Integer.compare(total, 0);
    }
}

3.石子游戏 VII

题目链接:1690. 石子游戏 VII

石子游戏中,爱丽丝和鲍勃轮流进行自己的回合,爱丽丝先开始 。

有 n 块石子排成一排。每个玩家的回合中,可以从行中 移除 最左边的石头或最右边的石头,并获得与该行中剩余石头值之 和 相等的得分。当没有石头可移除时,得分较高者获胜。

鲍勃发现他总是输掉游戏(可怜的鲍勃,他总是输),所以他决定尽力 减小得分的差值 。爱丽丝的目标是最大限度地 扩大得分的差值 。

给你一个整数数组 stones ,其中 stones[i] 表示 从左边开始 的第 i 个石头的值,如果爱丽丝和鲍勃都 发挥出最佳水平 ,请返回他们 得分的差值 。

示例 1:

输入:stones = [5,3,1,4,2]

输出:6

解释:

  • 爱丽丝移除 2 ,得分 5 + 3 + 1 + 4 = 13 。游戏情况:爱丽丝 = 13 ,鲍勃 = 0 ,石子 = [5,3,1,4] 。
  • 鲍勃移除 5 ,得分 3 + 1 + 4 = 8 。游戏情况:爱丽丝 = 13 ,鲍勃 = 8 ,石子 = [3,1,4] 。
  • 爱丽丝移除 3 ,得分 1 + 4 = 5 。游戏情况:爱丽丝 = 18 ,鲍勃 = 8 ,石子 = [1,4] 。
  • 鲍勃移除 1 ,得分 4 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [4] 。
  • 爱丽丝移除 4 ,得分 0 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [] 。

得分的差值 18 - 12 = 6 。

示例 2:

输入:stones = [7,90,5,1,100,10,10,2]

输出:122

提示:

n == stones.length

2 <= n <= 1000

1 <= stones[i] <= 1000

题解
方法:递归 记忆化搜索 动态规划 前缀和
        灵神教你一步步思考动态规划:从记忆化搜索到递推

方法:动态规划

public int stoneGameVII(int[] stones) {
    int n = stones.length;
    int[][] dp = new int[n][n];
    //通过动态方程,发现i和 >=i的有关系,j和<=j的有关系.
    //所以计算需要i从大到小,j从小到大,这样才能正确.
    for (int i = n - 2; i >= 0; i--) {
        for (int j = i + 1; j < n; j++) {
            if (i + 1 == j) {
                dp[i][j] = Math.max(stones[i], stones[j]);
            } else {
                //如果Alice先选i,那么bobo只能选i+1和j,这时候差就是stones[i+1]或者stones[j]
                //当然,还需要加上子区间dp的差值,才是最终的差值.
                //left和right就相当于是bobo选择后的差值,这个要尽可能小.所以是min
                //dp是Alice的差值,要尽可能大,所以是max
                int left = Math.min(stones[i + 1] + dp[i + 2][j], stones[j] + dp[i + 1][j - 1]);
                int right = Math.min(stones[i] + dp[i + 1][j - 1], stones[j - 1] + dp[i][j - 2]);
                dp[i][j] = Math.max(left, right);
            }
        }
    }
    return dp[0][n - 1];
}

4.Nim 游戏

题目链接:292. Nim 游戏

你和你的朋友,两个人一起玩 Nim 游戏:

  • 桌子上有一堆石头。
  • 你们轮流进行自己的回合, 你作为先手 。
  • 每一回合,轮到的人拿掉 1 - 3 块石头。
  • 拿掉最后一块石头的人就是获胜者。

假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。

示例 1:

输入:n = 4

输出:false

解释:以下是可能的结果:

  1. 移除1颗石头。你的朋友移走了3块石头,包括最后一块。你的朋友赢了。
  2. 移除2个石子。你的朋友移走2块石头,包括最后一块。你的朋友赢了。
  3. 你移走3颗石子。你的朋友移走了最后一块石头。你的朋友赢了。

在所有结果中,你的朋友是赢家。

示例 2:

输入:n = 1

输出:true

示例 3:

输入:n = 2

输出:true

提示:

1 <= n <= 231 - 1

题解
方法:博弈论

class Solution {
    public boolean canWinNim(int n) {
        return n % 4 != 0;
    }
}

        巴什博弈:只有一堆n个物品,两个人轮流从这堆物品中取物, 规定每次至少取一个,最多取m个。最后取光者得胜。 只要 n 不能整除 m+1 ,那么必然是先手取胜,否则后手取胜


下接:【题解】—— LeetCode一周小结6


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZShiJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值