数据结构与算法----队列

文章详细介绍了队列的基本操作,包括初始化、入队、出队、获取队头元素,以及队列的顺序和链式实现。讨论了循环队列的判空、判满策略,并提到了双端队列的不同操作限制。队列在树的层次遍历、图的广度优先遍历等算法中的应用也得到提及。
摘要由CSDN通过智能技术生成

只允许在一端进行插入,一端进行删除。(先进先出)

基本操作

InitQueue(&Q):初始化队列。

DestroyQueue(&Q):销毁队列。

EnQueue(&Q,x):入队,将x加入成为新的队尾。

DeQueue(&Q,&x):出队,删除队头元素,用x将之返回。

GetHead(Q,&x):读队头元素,将队头元素赋给x。

#define MaxSize 10
typedef struct{
    ElemType data[MaxSize];
    int front,rear;//rear是指向哪是队尾元素还是队尾元素的下一个位置。
}SqQueue;
//初始化队列
void InitQueue(SqQueue &Q){
    Q.rear=Q.front=0;
}
//判断是否为空
bool QueueEmpty(SqQueue Q){
    if(Q.rear=Q.front){
        return true;
    }else{
        return false;
    }
}
//入队
bool EnQueue(SqQueue &Q,ElemType x){
    if(队列已满){
        return false;
    }
    Q.data[Q.rear]=x;
    Q.rear = Q.rear+1;
    //Q.rear = (Q.rear+1)%MaxSize; 循环队列。
    //队列已满的条件:(Q.rear+1)%MaxSize==Q.front
    return true;
}
//出队
bool DeQueue(SqQueue &Q,ElemType &x){
    if(Q.rear==Q.front){
        return false;
    }
    Q.data[Q.front]=x
    Q.front=(Q.front+1)%MaxSize;
    // 循环队列。
    return true;
}
//获得队头的元素,用x返回
bool GetHead(SqQueue Q,ElemType &x){
    if(Q.rear==Q.front){
        return false;
    }
    x=Q.data[Q.front];
    return ture;
}

队列元素个数:(rear+MaxSize-front)%MaxSize

队列的链式实现

typedef struct LinkNode{//链式队列的结点
    ElemType data;
    struct LinkNode *next;
}LinkNode;
typedef struct{ //链式队列
    LinkNode *front,*rear;//队头队尾指针
}LinkQueue;
//初始化队列(带头结点)
void InitQueue(LinkQueue &Q){
    Q.front=Q.rear=(LinkNode*)malloc(sizeof(LinkNode));
    Q.front->next=NULL;
}
void testLinkQueue(){
    LinkQueue Q;
    InitQueue(Q);
}
//入队
bool EnQueue(LinkQueue &Q,ElemType x){
    LinkNode *s=(LinkQueue *)malloc(sizeof(LinkNode));
    s->data=x;
    s->next=NULL;
    Q.rear->next=s;
    Q.rear=s;
}
//出队
bool DeQueue(LinkQueue &Q,ElemType &x){
    if(Q.front=Q.rear)
        return false;
    LinkNode *p=Q.front->next;
    x=p->data;
    Q.front->next=p->next;
    if(Q.rear==p)
        Q.rear=Q.front;
    free(q);
    return true;
}

双端队列

只允许从两端插入,两端删除的线性表

输入受限的双端队列:只允许从一端插入,两端删除的线性表。

输出受限的双端队列:只允许从两端插入,一端删除的线性表。

循环队列

判空,判满,判断队列中元素的数量

判满方法:1.牺牲一个存储单元(rear+1)%MaxSize==front

使用条件:

队头队尾指向一个位置时候,队空(front==rear);

队头指针在队尾指针的下一个位置时,队满MaxSize为6;但是要牺牲一个最多只能存5个;

队列中元素的个数(rear-front+maxSize)%MaxSize

方法3:辅助变量记录队列数量

方法3:tag表明由于出队导致的rear==front(队空)还是入队导致的(队满)

应用

树的层次遍历

图的广度优先遍历

FCFS(先来先服务)

矩阵的压缩存储

数组的存储结构

  • 一维数组

各数组元素大小相同,且物理上连续存放。

  • 二维数组

特殊矩阵

  • 对称矩阵

只存储主对角线+下三角区,按行优先原则将各元素存入一维数组中。

数组大小:(1+n)*n/2

  • 三角矩阵

下三角矩阵,上三角矩阵,按行优先原则存入一维数组,并在最后一个位置存储常量c

数组大小:1+2+……+n+1

上三角:n(n+1)/2数组位置

  • 三对角矩阵

    按行优先原则,只存储带状部分--上三角元素

    前i-1共有3(i-1)-1个元素

    aij是第j-i+2个元素。

  • 稀疏矩阵

    三元组存储<行,列,值>;

    十字链表法;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值