判断搜索二叉树 isBST Binary Search Tree

6 篇文章 0 订阅
public class BTree {
    public static void main(String[] args) {
        TreeNode root = new TreeNode(6);
        TreeNode node2 = new TreeNode(4);
        TreeNode node3 = new TreeNode(8);
        TreeNode node4 = new TreeNode(3);
        TreeNode node5 = new TreeNode(5);
        TreeNode node6 = new TreeNode(7);
        TreeNode node7 = new TreeNode(9);
        root.left = node2;
        root.right = node3;
        node2.left = node4;
        node2.right = node5;
        node3.left = node6;
        node3.right = node7;

        inOrder(root);
        System.out.println();
        boolean res = isBST(root);
        System.out.println(res);
    }
    public static int minNum = Integer.MIN_VALUE;

    static boolean isBST(TreeNode root) {
        if (root == null) return true;
        isBST(root.left);
        if (root.value <= minNum) {
            return false;
        }else {
            minNum = root.value;
        }
        isBST(root.right);
        return true;
    }

    static void preOrder(TreeNode root) {
        if (root == null) return;
        System.out.print(root.value + " ");
        preOrder(root.left);
        preOrder(root.right);
    }

    static void inOrder(TreeNode root) {
        if (root == null) return;
        inOrder(root.left);
        System.out.print(root.value + " ");
        inOrder(root.right);
    }

    static void postOrder(TreeNode root) {
        if (root == null) return;
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.value + " ");
    }


}


class TreeNode {
    int value;
    TreeNode left;
    TreeNode right;
    public TreeNode(int value) {
        this.value = value;
    }
}

### 回答1: 二叉搜索树(Binary Search Tree):是一棵空树或者具有下列性质的二叉树:若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;它的左右子树也分别为二叉搜索树。 中序遍历序列:对于任意一棵二叉树,中序遍历的结果都是一个序列,这个序列称为中序遍历序列。 因此,判断一棵二叉树是否为二叉搜索树,可以先进行中序遍历,再判断遍历结果是否为升序序列。 以下是 Python 代码实现: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def inorderTraversal(root: TreeNode) -> List[int]: res = [] if not root: return res res.extend(inorderTraversal(root.left)) res.append(root.val) res.extend(inorderTraversal(root.right)) return res def isBST(root: TreeNode) -> bool: res = inorderTraversal(root) for i in range(1, len(res)): if res[i] <= res[i-1]: return False return True ``` 其中,`TreeNode` 是二叉树的节点类,`inorderTraversal` 函数是实现二叉树中序遍历的递归函数,`isBST` 函数是判断二叉树是否为二叉搜索树的函数。 ### 回答2: 要实现这个函数,首先我们可以使用递归的方式对二叉树进行中序遍历,即先遍历左子树,再访问根节点,最后遍历右子树。遍历过程中将遍历到的节点值保存到一个数组中。 接下来,我们需要判断该数组是否是按升序排列的,即判断是否是一棵二叉搜索树。我们可以遍历数组,依次比较相邻的节点值,如果前一个节点的值大于等于后一个节点的值,则认为不是二叉搜索树。反之,如果整个数组都符合这个条件,则认为是一个二叉搜索树。 以下是一个简单的实现代码: ``` class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def inorderTraversal(root): if not root: return [] result = [] inorder(root, result) return result def inorder(root, result): if not root: return inorder(root.left, result) result.append(root.val) inorder(root.right, result) def isBST(root): inorder_result = inorderTraversal(root) for i in range(1, len(inorder_result)): if inorder_result[i] <= inorder_result[i-1]: return False return True ``` 这个函数的时间复杂度是O(n),其中n是二叉树中节点的数量,因为我们需要遍历每个节点并将节点的值保存到数组中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EricFang0001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值