一、前言
上周阅读了SeisInvNet论文,本周阅读它的加强版,并尝试对InversionNet的网络框架进行一些小的修改,调整参数、添加组件等。
二、SeisInvNet
标题:Deep-learning seismic full-waveform inversion for realistic structural
models(用于真实结构模型的深度学习地震全波形反演)
作者:Bin Liu1, Senlin Yang2, Yuxiao Ren2, Xinji Xu3, Peng Jiang2, and Yangkang Chen4(和SeisInvNet有共同作者,应该是同一个实验团队)
编辑于2019年7月1日收到手稿;于2020年8月27日收到修订稿;于2020年10月4日提前出版;于2021年1月4日在线出版。
论文主要贡献:
- 设计了一种创建致密层/断层/盐体模型的压缩波速度建模方法,可以自动构建大量的模型;
- 在SeisInvNet的基础上,不仅使用共炮点道集,还从共接收点道集中提取特征;
在本文中,基于时域中的声波方程对合成数据进行建模:
(1)
其中a表示波速,u表示压力,即,声波场字母x和y表示空间坐标,t是时间,f(x,y,t)是源的函数。
图1 基于DL的速度模型反演算法的工作流程
- 地震数据D:数据的大小为[S × R × T]式中,S、R和T分别表示记录的激发次数、接收器数量和时间步长;
- 速度模型V:大小为[H,W],分别表示速度模型的高度和宽度,大小为[100,100];
2.1 构造致密层、断层和盐体模型
在构造致密层模型时,首先生成致密层构造模型,然后在其上随机添加断裂构造,从而设计出含一个或两个断层或盐体的致密层模型。对于密层模型,难点在于如何在有限的深度和勘探分辨率下,保证各层的连续性和变异性,增加地下介质的数量。按照以下步骤生成致密层模型:
- 1)随机生成一条曲线作为模型的第一个界面。
- 2)通过根据上界面进行一些调整来迭代生成曲线,以确保两个相邻界面之间没有剧烈变化并保持真实感。
- 3)将P波速度值填入相邻两界面之间的介质中,以介质越深对应的速度值越大为准则。
本文的目标反演模型尺寸设定为100 × 100。在模型周围,在左侧、右侧和底部有一个额外的20网格吸收边界。文章定义了一个由多个三角和线性方程组成的函数,以生成连续的,波动的和复杂的曲线。函数和单独的方程如下所示:
(2)
其中,、
和
、
是不同三角方程的参数,
和
分别是控制界面倾斜和深度的常数。让
,
,而
是随机给定的,
是曲线的主要部分。为了使两个相邻层之间的趋势相似,与前一个界面相比,每个界面的
都应进行调整。
项的周期和幅值在每个界面上分别指定。最后,对于
,
和
被分配以分别控制当前界面的深度和倾斜。通过以上定义,可以得到多个具有相同趋势的接口,如下图所示。
图2 由y组成的多个接口图
为了进一步削弱函数2中三角项对曲线的光滑性的影响,使模型更加真实,从每条曲线中选取一些离散点,通过重新连接这些点来形成新的曲线。这样,界面的随机性也增加了。该过程如下图3所示:
图3 曲线和相应的模型以不同的构造方式
所有界面确定后,自上而下设置各层的纵波速度值,取值范围为[1500, 4000] m/s。 同时,根据真实的土介质的固结效应,将各层的速度值设定为随层深增加而增加。在我们的实现中,我们将相邻层之间的速度差设置为大于200 m/s。根据所需的最大波速、前一层介质的波速
、下一层介质的数量
和随机项
,选择各层介质的波速范围。速度范围如下:
(3)
在图4中,对不同类型的层模型(5到9层)的速度值变化进行了统计分析。两种模型的速度值随深度的增加而增加,这一趋势是一致的。通过以上曲线设计、界面设置、速度分配等过程,可以构建出真实的结构模型。最终生成五到九层的密集层模型,每层有1000个模型。
图4 训练集中稠密层模型各深度处的平均波速。
在密层模型设计的基础上,进一步研究了故障设置问题。使用密集层模型和故障线