一、概述
本系列内容参考闵老师的博客:数学表达式: 从恐惧到单挑 (符号表)
(1)数学表达式的几个注意事项:
- 公式这种说法具有误导性,应该用equation或者expression表示;
- 数学表达式的特点不是复杂,而是与文字相比起来简单准确;
- 数学表达式不是越难懂越好,而是越简洁易懂越好;
(2)数学表达式学习建议:
- 建议最好找《离散数学》、《概率论与数理统计》、《机器学习》(西瓜书)等书籍模仿,其次是顶刊论文,一般论文不要看;
- 从简单到复杂;
(3)一些准则:
- 提到“XXX 公式”时,提出者必须是大数学家;
- 提到“XXX 说”时,这个人的水平不能低于周志华(国际人工智能联合会理事会主席);
- 不可将其他可视化工具写的数学表达式转换为latex;
二、符号表
2.1 常用符号表
下表为符号常用表,在“ 文字 ”的两边加上“ $ ”符号即变成左边的符号(需要在markdown编辑器下添加,该模式写出的表达式的源码与Latex比较一致),还有一些符号需要逐步加入。
符号 | 文字 | 涵义 | 备注 |
---|---|---|---|
x {x} x | x | 标量 | 小写字母 |
x \mathbf{x} x | \mathbf{x} | 向量 | 小写字母 |
X \mathbf{X} X | \mathbf{X} | 矩阵、集合 | 大写字母 |
x T \mathbf{x}^{\mathrm{T}} xT | \mathbf{x}^{\mathrm{T}} | 向量转置 | T表示transpose |
注意:表示向量、集合等,可以使用粗体 \mathbf{x} ( x \mathbf{x} x),\bm{x} ( x \bm{x} x),\boldsymbol{x} ( x \boldsymbol{x} x)。主要全文统一即可,建议使用\mathbf{x}。
2.2 希腊字母表
希腊字母小写、大写 | LaTex形式 | 希腊字母小写、大写 | Latex形式 |
---|---|---|---|
α A \alpha A αA | \alpha A | μ N \mu N μN | \mu N |
β B \beta B βB | \beta B | ξ Ξ \xi \Xi ξΞ | \xi \Xi |
γ Γ \gamma \Gamma γΓ | \gamma \Gamma | o O o O oO | o O |
δ Δ \delta \Delta δΔ | \delta \Delta | π Π \pi \Pi πΠ | \pi \Pi |
ϵ ε E \epsilon \varepsilon E ϵεE | \epsilon \varepsilon E | ρ ϱ P \rho \varrho P ρϱP | \rho \varrho P |
ζ Z \zeta Z ζZ | \zeta Z | σ Σ \sigma \Sigma σΣ | \sigma \Sigma |
η H \eta H ηH | \eta H | τ T \tau T τT | \tau T |
θ ϑ Θ \theta \vartheta \Theta θϑΘ | \theta \vartheta \Theta | υ Υ \upsilon \Upsilon υΥ | \upsilon \Upsilon |
ω Ω \omega \Omega ωΩ | \omega \Omega | ϕ φ Φ \phi \varphi \Phi ϕφΦ | \phi \varphi \Phi |
κ K \kappa K κK | \kappa K | χ X \chi X χX | \chi X |
λ Λ \lambda \Lambda λΛ | \lambda \Lambda | ψ Ψ \psi \Psi ψΨ | \psi \Psi |
μ M \mu M μM | \mu M | ι \iota ι | \iota |
三、集合的表示与运算
集合论是数学的基础,更是计算机的基础。在默认情况下,集合元素不可重复(在组合数学中有可重集的概念)。另外,集合元素是无序的。
3.1 集合的表示
(1)枚举法:
A = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \mathbf{A}=\{0,1,2,3,4,5,6,7,8,9\} A={ 0,1,2,3,4,5,6,7,8,9} 表示阿拉伯数字的集合;