学习记录之数学表达式(1)

一、概述

  本系列内容参考闵老师的博客:数学表达式: 从恐惧到单挑 (符号表)

  (1)数学表达式的几个注意事项:

  • 公式这种说法具有误导性,应该用equation或者expression表示;
  • 数学表达式的特点不是复杂,而是与文字相比起来简单准确;
  • 数学表达式不是越难懂越好,而是越简洁易懂越好;

  (2)数学表达式学习建议:

  • 建议最好找《离散数学》、《概率论与数理统计》、《机器学习》(西瓜书)等书籍模仿,其次是顶刊论文,一般论文不要看;
  • 从简单到复杂;

  (3)一些准则:

  • 提到“XXX 公式”时,提出者必须是大数学家;
  • 提到“XXX 说”时,这个人的水平不能低于周志华(国际人工智能联合会理事会主席);
  • 不可将其他可视化工具写的数学表达式转换为latex;

二、符号表

2.1 常用符号表

  下表为符号常用表,在“ 文字 ”的两边加上“ $ ”符号即变成左边的符号(需要在markdown编辑器下添加,该模式写出的表达式的源码与Latex比较一致),还有一些符号需要逐步加入。

表2.1 常用符号表
符号 文字 涵义 备注
x {x} x x 标量 小写字母
x \mathbf{x} x \mathbf{x} 向量 小写字母
X \mathbf{X} X \mathbf{X} 矩阵、集合 大写字母
x T \mathbf{x}^{\mathrm{T}} xT \mathbf{x}^{\mathrm{T}} 向量转置 T表示transpose

  注意:表示向量、集合等,可以使用粗体 \mathbf{x} ( x \mathbf{x} x),\bm{x} ( x \bm{x} x),\boldsymbol{x} ( x \boldsymbol{x} x)。主要全文统一即可,建议使用\mathbf{x}。

2.2 希腊字母表

表2.2 希腊字母表
希腊字母小写、大写 LaTex形式 希腊字母小写、大写 Latex形式
α A \alpha A αA \alpha A μ N \mu N μN \mu N
β B \beta B βB \beta B ξ Ξ \xi \Xi ξΞ \xi \Xi
γ Γ \gamma \Gamma γΓ \gamma \Gamma o O o O oO o O
δ Δ \delta \Delta δΔ \delta \Delta π Π \pi \Pi πΠ \pi \Pi
ϵ ε E \epsilon \varepsilon E ϵεE \epsilon \varepsilon E ρ ϱ P \rho \varrho P ρϱP \rho \varrho P
ζ Z \zeta Z ζZ \zeta Z σ Σ \sigma \Sigma σΣ \sigma \Sigma
η H \eta H ηH \eta H τ T \tau T τT \tau T
θ ϑ Θ \theta \vartheta \Theta θϑΘ \theta \vartheta \Theta υ Υ \upsilon \Upsilon υΥ \upsilon \Upsilon
ω Ω \omega \Omega ωΩ \omega \Omega ϕ φ Φ \phi \varphi \Phi ϕφΦ \phi \varphi \Phi
κ K \kappa K κK \kappa K χ X \chi X χX \chi X
λ Λ \lambda \Lambda λΛ \lambda \Lambda ψ Ψ \psi \Psi ψΨ \psi \Psi
μ M \mu M μM \mu M ι \iota ι \iota

三、集合的表示与运算

  集合论是数学的基础,更是计算机的基础。在默认情况下,集合元素不可重复(在组合数学中有可重集的概念)。另外,集合元素是无序的。

3.1 集合的表示

  (1)枚举法:

   A = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \mathbf{A}=\{0,1,2,3,4,5,6,7,8,9\} A={ 0,1,2,3,4,5,6,7,8,9} 表示阿拉伯数字的集合;

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值