【算法打卡(背包问题)--7.28】

前言

背王
背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的体积和价值,在限定的总体积内,我们如何选择,才能使得物品的总价值最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。相似问题经常出现在商业、组合数学,计算机复杂理论、密码学和应用数学等领域中。也可以将背包问题描述为决定性问题,即在总体积不超过V的前提下,总价值是否能达到M?它是在1978年由Merkel和Hellman提出的。
背包问题简要的分为以下3种,还有一些都是这3种的变形以及组合。
01背包: 有N件物品和一个体积为V的背包。(每种物品均只有一件)第i件物品的体积是volume[i],价值是value[i]。求解将哪些物品装入背包可使这些物品的体积总和不超过背包体积,且价值总和最大。
多重背包: 有N种物品和一个体积为V的背包。第i种物品最多有n[i]件可用,每件体积是volume[i],价值是value[i]。求解将哪些物品装入背包可使这些物品的体积总和不超过背包体积,且价值总和最大。
完全背包: 有N种物品和一个体积为V的背包,每种物品都有无限件可用。第i件物品的体积是volume[i],价值是value[i]。求解将哪些物品装入背包可使这些物品的体积总和不超过背包体积,且价值总和最大。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

  • 不选择 nums[i],如果在 [0, i - 1] 这个子区间内已经有一部分元素,使得它们的和为 j ,那么 dp[i][j] = true;
  • 选择 nums[i],如果在 [0, i - 1] 这个子区间内就得找到一部分元素,使得它们的和为 j - nums[i]。
    状态转移方程:

dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i]]

提示:以下是本篇文章正文内容,下面案例可供参考

一、分割等和子集

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length;

        //「等和子集」的和必然是总和的一半
        int sum = 0;
        for (int i : nums) sum += i;
        int target = sum / 2;
        
        // 对应了总和为奇数的情况,注定不能被分为两个「等和子集」
        if (target * 2 != sum) return false;

        int[][] f = new int[n][target + 1];
        // 先处理考虑第 1 件物品的情况
        for (int j = 0; j <= target; j++) {
            f[0][j] = j >= nums[0] ? nums[0] : 0;
        }

        // 再处理考虑其余物品的情况
        for (int i = 1; i < n; i++) {
            int t = nums[i];
            for (int j = 0; j <= target; j++) {
                // 不选第 i 件物品
                int no = f[i-1][j];
                // 选第 i 件物品
                int yes = j >= t ? f[i-1][j-t] + t : 0;
                f[i][j] = Math.max(no, yes);
            }
        }
        // 如果最大价值等于 target,说明可以拆分成两个「等和子集」
        return f[n-1][target] == target;
    }
}
 

在这里插入图片描述

二、494. 目标和

 class Solution{
    public int findTargetSumWays(int[] nums, int target)
    {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        int bagSize = (target + sum) / 2;
        if (bagSize < 0) bagSize = -bagSize;
        //如果target + sum为奇数,则无解
        if ((target + sum) % 2 == 1) return 0;

        int[][] dp = new int[nums.length + 1][bagSize + 1];
        for (int i = 0; i <= nums.length; i++) {
            dp[i][0] = 1;
        }
        for (int i = 1; i <= nums.length; i++) {
            for (int j = 0; j <= bagSize; j++) {
                if (j >= nums[i - 1])
                    dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i - 1]];
                    //很多人不理解这里为什么是nums[i - 1]
//  这是因为第一层for中的i从1开始,i-1是为了让nums[]从第一个元素开始遍历,是对齐操作
                else
                    dp[i][j] = dp[i - 1][j];
            }
        }
        return dp[nums.length][bagSize];
    }
}
 

在这里插入图片描述

总结

已经看透就不失望了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人间凡尔赛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值