数据分析业务面试题

本文列举了数据分析面试中常见的问题,如工作流程、常用方法、销售额下降分析、用户留存率下降原因探讨,以及数据预处理等。通过对业务场景的深入剖析,展示了如何运用对比分析、多维度拆解、RFM模型等工具来理解和解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

Q1:请简述数据分析的工作流程?

Q2:你经常用到的数据分析方法有哪些,举例说明?

Q3:公司最近一周的销售额下降了,你如何分析下降原因?

Q4:店铺销售额降低如何分析?

Q5:若用户留存率下降如何分析?

Q6:店铺商品销售情况分布后

Q7:如何描述店铺经营状况?

Q8:应该如何处理可疑或缺失数据?

Q9: 业务场景题,如何分析次日留存率下降的问题

Q10:解释一下同环比

Q11:如果次日用户留存率下降了 5%该怎么分析?

Q12:RFM 模型的优缺点

 Q13:谈谈你对业务指标的理解

Q14:数据预处理过程有哪些?

 Q15:数据缺失怎么办?


数据分析面试题(一)

Q1:请简述数据分析的工作流程

  1. 明确分析需求,确定分析思路
  2. 数据收集
  3. 数据处理
  4. 数据分析
  5. 数据可视化
  6. 数据分析报告的制作

Q2:你经常用到的数据分析方法有哪些,举例说明?

对比分析、5W2H、多维度拆解、漏斗分析、用户画像、A/B 测试等 (无固定答案)

Q3:公司最近一周的销售额下降了,你如何分析下降原因?

我认为主要有两个方面的原因:

首先考虑内部原因:

主要从影响销售额的因素去分析:

1. 比如是单价下降了 还是数量下降了 还是单价和数量都下降了 这是从直接 影响的角度去分析

2. 其次,还有可能是转化方面的原因 所以会去看一下前置性的因素 比如一个 电商的销售额下降 可以去看看是不是激活下降了 再往前 可以看看自己的 app 排名是否下降了

3. 此外,还有一个思路就是下钻 大致分为两个:

  1. 时间上的下钻
  2. 空 间上的下钻

时间上的下钻:去看每一天的销售额是否有异常 是突然下降 还是 持续下降

空间上的下钻:去看具体哪个地区的销售额出现了下降, 哪个品类的销售额出现 了下降, 哪个人群(新用户、老用户)的销售额出现了下降 。

然后考虑外部原因:

主要分为竞争对手和政策性的原因。比如竞争对手在搞促销活动 肯定会吸引一 部分用户过去 例如亚马逊图书搞活动 会导致京东图书的销售额下降。 政策性的原因 这个很好理解 比如最近贸易战 出于避险情绪 股票的价格突然下挫。

Q4:店铺销售额降低如何分析?

定位问题:

运用多维度分析法和七何分析模型定位到异常现象发生的具体位置和程度

拆分维度有:

  • who:用户(新用户/老用户、渠道、画像等)
  • when:访问时段
  • where:产品(产品类型)

定位到底是谁的销售额变低?

拆分问题:

运用多维度分析法从指标构成拆分

  • 销售额=浏览量*转化率*客单价
  • 销售额=GMV-取消订单金额-退货订单金额
  • 假设检验:确定问题源头,分析原因,提出假设再验证,再假设再验证

可以从以下角度提出假设

  • 内部原因:产品、价格、渠道、促销(4P 营销理论)
  • 外部原因:政治、经济、社会、技术(PEST 分析)

例如:

  • 如果是某渠道的转化率降低的话,可以考虑这个渠道是否作假,或者是该渠道 带来的用户非目标用户;
  • 如果是整体的浏览量下降的话,可以考虑采取手段改善,如增大广告投放等;
  • 如果是某类商品的浏览量、转化率都降低,可以考虑是否外界社会舆论压力或 者用户生活方式的改变,导致此类型商品需求量降低;
  • 如果整体的转化率下降的话,可以考虑是受竞争对手的影响;

Q5&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据牧马人

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值