64. 最小路径和 - 力扣(LeetCode)
给定一个包含非负整数的 *m* x *n*
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
**说明:**每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
思路:
这道题也可以同时用记忆化搜索和动态规划来实现
#include <vector>
#include <climits>
using namespace std;
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int n = grid.size();
if (!n) return 0;
int m = grid[0].size();
// 初始化记忆数组
memo = vector<vector<int>>(n, vector<int>(m, INT_MAX));
// 调用递归函数
return dfs(grid, n - 1, m - 1);
}
private:
vector<vector<int>> memo; // 记忆数组
int dfs(const vector<vector<int>>& grid, int i, int j) {
// 如果当前位置已经计算过,直接返回记忆数组中的结果
if (memo[i][j] != INT_MAX)
return memo[i][j];
// 如果是起点,则直接返回其值
if (i == 0 && j == 0)
return memo[i][j] = grid[i][j];
// 更新当前位置的最小路径和
int minPath = INT_MAX;
if (i > 0)
minPath = min(minPath, dfs(grid, i - 1, j) + grid[i][j]);
if (j > 0)
minPath = min(minPath, dfs(grid, i, j - 1) + grid[i][j]);
// 将结果存入记忆数组并返回
return memo[i][j] = minPath;
}
};
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int n = grid.size();
if (!n) return 0;
int m = grid[0].size();
vector<vector<int>> f(n, vector<int>(m, INT_MAX));
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ ) {
if (!i && !j) f[i][j] = grid[i][j];
else {
if (i) f[i][j] = min(f[i][j], f[i - 1][j] + grid[i][j]);
if (j) f[i][j] = min(f[i][j], f[i][j - 1] + grid[i][j]);
}
}
return f[n - 1][m - 1];
}
};
70. 爬楼梯 - 力扣(LeetCode)
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
提示:
1 <= n <= 45
思路:
用动态规划完成,注意初始变量的定义
class Solution {
public:
int climbStairs(int n) {
vector<int>f(n + 1);
f[0] = 1;
f[1] = 1;
for (int i = 2; i <= n; i ++ )
f[i] = f[i - 1] + f[i - 2];
return f[n];
}
};
72. 编辑距离 - 力扣(LeetCode)
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和word2
由小写英文字母组成
思路:
用动态规划来实现
- 替换操作:这意味着我们需要将
word1
中的第i
个字符替换为word2
中的第j
个字符,此时编辑距离会增加 1。因此,f[i - 1][j - 1]
表示了替换操作的编辑距离。 - 删除操作:这意味着我们需要删除
word1
中的第i
个字符,使得word1
的前i-1
个字符与word2
的前j
个字符匹配。这个删除操作会导致编辑距离增加 1。因此,f[i - 1][j]
表示了删除操作的编辑距离。 - 插入操作:这意味着我们需要在
word1
中的第i
个字符之前插入word2
中的第j
个字符,使得word1
的前i
个字符与word2
的前j-1
个字符匹配。这个插入操作也会导致编辑距离增加 1。因此,f[i][j - 1]
表示了插入操作的编辑距离。
class Solution {
public:
int minDistance(string word1, string word2) {
word1 = ' ' + word1, word2 = ' ' + word2;
int n = word1.size(), m = word2.size();
vector<vector<int>> f(n + 1, vector<int>(m + 1));
for(int i = 0; i <= n; i ++)
f[i][0] = i;
for(int i = 0; i <= m; i ++)
f[0][i] = i;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= m; j ++)
{
if(word1[i] == word2[j])
f[i][j] = f[i - 1][j - 1];
else
//注意f[i - 1][j - 1]表示替换一个字符 f[i - 1][j]
f[i][j] = min(f[i - 1][j - 1] + 1, min(f[i - 1][j], f[i][j - 1]) + 1);
}
}
return f[n][m];
}
};
75. 颜色分类 - 力扣(LeetCode)
给定一个包含红色、白色和蓝色、共 n
个元素的数组 nums
,**原地**对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
我们使用整数 0
、 1
和 2
分别表示红色、白色和蓝色。
必须在不使用库内置的 sort 函数的情况下解决这个问题。
示例 1:
输入:nums = [2,0,2,1,1,0]
输出:[0,0,1,1,2,2]
示例 2:
输入:nums = [2,0,1]
输出:[0,1,2]
提示:
n == nums.length
1 <= n <= 300
nums[i]
为0
、1
或2
进阶:
- 你能想出一个仅使用常数空间的一趟扫描算法吗?
思路:
用三指针三路快排,维护三个区间分别为值是0,值是1,值是2
class Solution {
public:
void sortColors(vector<int>& nums) {
int n = nums.size();
int left = 0, right = n - 1;
for(int i = 0; i < n; i ++)
{
while(i <= right && nums[i] == 2)//注意这里是while,直到当前已经不是2了才结束
{
swap(nums[i], nums[right --]);
}
if(nums[i] == 0)
swap(nums[i], nums[left ++]);
}
}
};
76. 最小覆盖子串 - 力扣(LeetCode)
todo
78. 子集 - 力扣(LeetCode)
给你一个整数数组 nums
,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
提示:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
nums
中的所有元素 互不相同
思路:
可以采用二进制枚举
或者dfs
来实现,下面看看两种代码
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> ans;
int n = nums.size();
for(int i = 0; i < (1 << n); i ++)
{
vector<int> temp;
for(int j = 0; j < n; j ++)
{
if(i >> j & 1)
temp.push_back(nums[j]);
}
ans.push_back(temp);
}
return ans;
}
};
class Solution {
public:
vector<int> path;
vector<vector<int>> ans;
void dfs(int index, vector<int> nums)
{
ans.push_back(path);
if(index > nums.size())
return ;
for(int i = index; i < nums.size(); i ++)
{
path.push_back(nums[i]);
dfs(i + 1, nums);
path.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
dfs(0, nums);
return ans;
}
};