- 博客(250)
- 收藏
- 关注
原创 定标时出现模糊解,有参数对模型没影响。或者这个参数设置条件时,对模型等式没影响
注意,定标模拟数据可以精确解出来没有用,要注意只有一种畸变的时候,会不会对等式约束没影响。所以才会出现模糊解。比如dc1=dc2时.对所有的约束都没影响,此时只要有一个dc1=dc2就都成立。
2025-03-30 21:12:32
66
原创 法拉第旋转与椭圆倾角,椭圆倾角在矢量中的体现
法拉第旋转的形式和椭圆倾角的形式都是旋转矩阵的形式,琼斯适量可以表四为椭圆倾角的旋转和。所以法拉第旋转会影响发射极化波的。
2025-03-24 10:59:09
79
原创 小奇异值代表这个未知矢量在这个方向vi对方程贡献不大,这也就导致观测如果在对应的ui上有个变动,会导致求解的x在vi方向有个大改变,如果观测量 。+条件数
e
2025-03-17 00:17:24
183
原创 matlab数值精度就1e15
如果matlab有一个矩阵,对矩阵求逆,但是矩阵的行列式值是 8.4576e-34 + 6.9232e-34i,已经小于1e-15,此时矩阵已经算是不可逆矩阵了,此时求逆得到的矩阵并不是真的逆矩阵了,因为该矩阵已经算不可逆,得到的也是畸变很大的矩阵。与原矩阵相乘都不是单位阵。
2025-03-16 21:32:11
218
原创 db形式下的误差
这个可以看见 a 是初始值 b是估计值,如果误差公式是db(abs(a-b)) 误差不可能达到5db啊。所以这个串扰误差是,用。
2025-02-26 10:38:58
151
原创 为什么要只成K矩阵
只乘一个k矩阵,其还是R1R2R3和C3的形式,但是如果乘了alpha矩阵就不是R2就被拆开了,就不再是R1R2R3和C3的形式了,
2025-02-21 14:17:55
85
原创 对角阵相乘相当于乘个乘子,不改变0
A*B如果A是对角阵,则B中元素对然被改变,但是都是成倍数的改变,并没有元素之间的耦合,所以原来是0,乘完之后还是0.
2025-02-17 17:04:02
89
原创 angle函数带来的相位模糊
如果Ω = 3pi/4, 2*Ω = 3pi/2 而用arg求出2*Ω是-pi/2。此时Ω得到是-pi/4。求Ω 用arg(y)/2会带来相位模糊。所以在求相位时,会到来+-pi的模糊。
2025-01-06 14:42:02
147
原创 判断一个三维图是不是线性上升的
xy = z 其上升的速率是变化的,和2x+2y = z不同,其对于x对于y上升的速率都是不变的,所以其是线性上升的,有平面。但上升速率改变就不是平面。z固定后,可以看x与y的关系x = z/y.是一个反比例函数的形状。所以在x = 5和-5的截面上,交线是一条直线。
2025-01-06 09:20:37
141
原创 matlab读取二进制文件,要指定保存的数据类型
00000000 00000011 三 00000000 00000001 一 合起来是196609。在读取的时候 每16位一组来读取,正确识别了,虽然其实也是错的,因为是一个字节一读取数字。如果直接指定正确的格式fwrite(fileID, a, 'uint16');自动识别16位还是多少位,得到的k是下面的,这说明 数据保存的是。有0是因为,按一个字节一读取数字,现在是按照2个字节一读取数字。因为读取的时候按照32位是一个数。
2024-12-26 17:56:50
598
原创 ‘ieee-be‘ 对字节调换顺序
00000000 00000001 是数字一 ieee-be是 认为字节顺序颠倒 00000001 0000000是正确的。% 注意:fwrite 会自动根据数据类型的大小来写入正确数量的字节。所以对正常的1 取用ieee-be读取 会变成256。对于int16来说 16位 2个字节。
2024-12-26 17:53:50
238
原创 伪逆是如何减少方程数目的,非方阵会减少方程数嘛?
2、由于对称性,右边未知数部分有关系,减少了未知数。1、把观测值放在左边,有多少观测值就有多少方程。有时候方程不能如下,改变会减少方程数目。
2024-12-21 16:55:30
214
原创 伪逆不能把矩阵变成单位阵
伪逆用来求解方程的最小二乘解(相当于线性方程版本的牛顿迭代找最小残差)。补充伪逆只有一个,没有什么左伪逆右伪逆。如何判断伪逆能不能恢复矩阵成单位阵。
2024-12-20 15:45:09
409
原创 根据电场传输的原理(S矩阵是2*2的),用8个参数就可以描述扭曲。S矩阵的矢量形式不是电场传输模型,看起来要16个参数。所以只是矩阵和矢量的差别,表示其畸变就差了很多
恢复后的残余,仍可以用畸变模型,但是注意,参与的串扰和不平衡可不是 = 原不平衡除矫正的不平衡。下面的代码可看出,残余的不平衡不是只和原始不平衡与矫正不平衡有关,其与不平衡串扰都有关,再等效出的残余不平衡。故卫星已经矫正的图像,我们还可以用定标模型矫正参与的串扰和不平衡。
2024-12-19 09:56:57
125
原创 极化定标的所有模型,和不同模型串扰,不平衡之间关系,两行交换,两列交换
只要提取出对角线,使原矩阵对角线是1,无论形式怎么改变,对角线是1的矩阵都是同一个矩阵。3、把模型1中的不平衡项提出来,模型1和模型2的关系。其中Y是提出来的rvvtvv。这个其实就是模型二中的串扰项。
2024-12-18 15:42:10
230
原创 对X-Xk求导和对X求导
对X求导等于0的方程,得到的是X等于什么时候导数等于0的解。这两个其实都是X等于等于生么导数为0。对X-xk求导等于0,得到一个方程,里面有X-xk等于什么时候导数等于0的解。
2024-12-14 20:32:13
213
原创 【无标题】
target reflection symmetry 目标反射对称 同极化和交叉极化相关 = 0。target reciprocity 目标互易 SHv= SVH。system reciprocity 系统互易 R = T^T。
2024-12-10 10:52:57
143
原创 两种不同简缩极化的六个方程
方程1 = (3*A*(b - a*1i + 1) - A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(a - b*1i)*1i + 3*A*(b - a*1i + 1) + 2*(A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(c - d*1i) + (A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c +
2024-12-09 20:43:57
885
原创 奇异值分解推导——把任意n维度矢量,从vi基分量对应映射到ui基分量。所以分解后,V转置是提取矢量中属于V的列的分量。
1、n个基在 在≥n的维度下存在,如果是n维度,则n个矢量。如果是m维度,仍然是n个矢量(行为m的矢量),但基不完整。2、对称矩阵的特征矢量,就是一组基。
2024-12-09 19:52:05
279
原创 梯度和hessian矩阵是一个函数的一阶导和二阶导,jacobi是多个函数的一阶导。
梯度是个行向量,所以才有雅可比矩阵的形式。hessian矩阵也是对梯度(行),分别做运算并竖向排列。
2024-12-09 15:00:58
221
原创 ainiworth 在分布式目标的方程中 与正常互易性可以形成的方程不同 多引入了协方差元素未知 但可解,因为此时只有一个串扰参数且已经解出来了
该情况下可以解出来这个也是因为总共就一个α未知数,原始方程已经够了,再加一个未知数一个方程也可以解出这个方程。3、再把β‘ = CVHHV α*/α 由于α已经解出来了,所以β’也被解出来了;HVHV = VHVH 拆开 ,可以解 原始协方差矩阵元素β 和 畸变项α的模;是引入了一个原始协方差矩阵的元素作为未知数,其并没有给解串扰参数带来作用。2、再根据方程VHHV相位(虚部) = 0 可以解α的相位。这个散射互易性,在不考虑AB时 方程应该只剩。
2024-12-05 20:53:58
239
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人