期末周总结-人工智能-遗传算法聚类

本文总结了期末学习的人工智能课程,重点探讨了遗传算法在聚类问题中的应用。通过k-Means算法,实现了数据的高效聚类,并展示了聚类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

针对 k -Means 算法在聚类时精确度不高及输入参数难以确定等缺点,提出了基于遗传算法的聚类框架。该算法框架主要是将聚类问题转化为对准则函数最优解的搜索问题,然后使用遗传算法在全局空间上进行搜索进而得到最优解。对该框架下传统遗传算法聚类和基于 k -Means 的遗传算法聚类进行了研究,实验部分与 k -Means 算法在四个数据集上进行了综合对比。实验结果表明,遗传算法聚类具有聚类效果好,无需提前输入聚类簇数等优点,综合性能优于 k -Means 算法。

 k-Means算法准则函数如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值