针对
k
-Means
算法在聚类时精确度不高及输入参数难以确定等缺点,提出了基于遗传算法的聚类框架。该算法框架主要是将聚类问题转化为对准则函数最优解的搜索问题,然后使用遗传算法在全局空间上进行搜索进而得到最优解。对该框架下传统遗传算法聚类和基于 k
-Means
的遗传算法聚类进行了研究,实验部分与
k
-Means
算法在四个数据集上进行了综合对比。实验结果表明,遗传算法聚类具有聚类效果好,无需提前输入聚类簇数等优点,综合性能优于 k
-Means
算法。

k-Means算法准则函数如下: