SpringBoot整合Redeis

1.1Redis简介

l Redis 是一个高性能的开源的、C语言写的Nosql(非关系型数据库),数据保存在内存中。

l Redis 是以key-value形式存储,和传统的关系型数据库不一样。不一定遵循传统数据库的一些基本要求,比如说,不遵循sql标准,事务,表结构等等,非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。

l Java中数据结构:String,数组,list,set map…

l Redis提供了很多的方法,可以用来存取各种数据结构的数据

1.2 什么是NoSql

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,它泛指非关系型的数据库。随着互联网2003年之后web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的交友类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。

1.3 为什么用redis

1.数据保存在内存,存取速度快,并发能力强

2.它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、 zset(sorted set --有序集合)和hash(哈希类型)。

3.redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库(如MySQL)起到很好的补充作用。

4.它提供了Java,C/C++,C#,PHP,JavaScript等客户端,使用很方便。

5.Redis支持集群(主从同步)。数据可以主服务器向任意数量从的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。

6.支持持久化,可以将数据保存在硬盘的文件中

1.4 Redis使用场景

1:缓存,毫无疑问这是Redis当今最为人熟知的使用场景。再提升服务器性能方面非常有效。

2:排行榜,在使用传统的关系型数据库(mysql oracle 等)来做这个事儿,非常的麻烦,而利用Redis的SortSet(有序集合)数据结构能够简单的搞定。

3:利用Redis中原子性的自增操作,我们可以统计类似用户点赞数、用户访问数等,这类操作如果用MySQL,频繁的读写会带来相当大的压力;限速器比较典型的使用场景是限制某个用户访问某个API的频率,常用的有抢购时,防止用户疯狂点击带来不必要的压力;

4: 一些频繁被访问的数据,经常被访问的数据如果放在关系型数据库,每次查询的开销都会很大,而放在redis中,因为redis 是放在内存中的可以很高效的访问

2 springboot整合redis 环境搭建

1 导入依赖

<!-- !redis-->
 <dependency>
     <groupId>org.springframework.boot</groupId>
     <artifactId>spring-boot-starter-data-redis</artifactId>
 </dependency>

2 加入配置

#=======redis连接池配置==============

# Redis数据库索引(默认为0)
spring.redis.database=0
# Redis服务器地址
spring.redis.host=127.0.0.1
# Redis服务器连接端口
spring.redis.port=6379
# Redis服务器连接密码(默认为空)
spring.redis.password=
# 连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=20
# 连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=-1
# 连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=10
# 连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=0
# 连接超时时间(毫秒)
spring.redis.timeout=0

3 创建redis配置类RedisConfig

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.boot.autoconfigure.AutoConfigureAfter;
import org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.interceptor.KeyGenerator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.cache.RedisCacheWriter;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializationContext;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import java.lang.reflect.Method;
@Configuration
@EnableCaching // 启用缓存,使用 Lettuce,自动注入配置的方式
@AutoConfigureAfter(RedisAutoConfiguration.class)
public class RedisConfig extends CachingConfigurerSupport {

    //缓存管理器
    @Bean
    @SuppressWarnings("all")
    public CacheManager cacheManager(LettuceConnectionFactory factory) {
        RedisCacheWriter writer = RedisCacheWriter.lockingRedisCacheWriter(factory);
        RedisSerializationContext.SerializationPair pair =
                RedisSerializationContext.SerializationPair.fromSerializer(
        new Jackson2JsonRedisSerializer(Object.class));
        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();

        return new RedisCacheManager(writer, config);
    }
    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
        redisTemplate.setConnectionFactory(connectionFactory);

        // String 序列化方式
        StringRedisSerializer stringSerializer = new StringRedisSerializer();
        // 使用Jackson2JsonRedisSerialize替换默认序列化
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);

        ObjectMapper objectMapper = new ObjectMapper();
        objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        objectMapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);

        jackson2JsonRedisSerializer.setObjectMapper(objectMapper);

        // 设置key的序列化规则
        redisTemplate.setKeySerializer(stringSerializer);
        redisTemplate.setHashKeySerializer(stringSerializer);
        // 设置value的序列化规则
        redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
        redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);

        return redisTemplate;
    }

    // 重新定义缓存 key 的生成策略
    @Bean
    @Override
    public KeyGenerator keyGenerator() {
        return new KeyGenerator() {
            @Override
            public Object generate(Object target, Method method,  Object... params){
                    StringBuilder sb = new StringBuilder();
                    sb.append(target.getClass().getName());
                    sb.append(method.getName());
                for(Object obj:params){
                  sb.append(obj.toString());
               }
                return sb.toString();
        }
    };
}
}

3 redis 数据设置和获取

//设置字符串
redisTemplate.opsForValue().set("userName","张三");
//设置数字
redisTemplate.opsForValue().set("age",23);
UserInfo userInfo = new UserInfo();
userInfo.setUserName("rock");
userInfo.setUserPwd("123");
//设置对象
redisTemplate.opsForValue().set("userInfo",userInfo);

List<UserInfo> list = new ArrayList<>();
for(int i=0;i<3;i++){
    UserInfo gg = new UserInfo();
    gg.setUserName("rock"+i);
    gg.setUserPwd("123"+i);
    list.add(gg);
}
//设置集合对象
redisTemplate.opsForValue().set("userInfoList",list);

//获取 字符串
String userName = redisTemplate.opsForValue().get("userName")+"";
//获取 数字
int age =(int) redisTemplate.opsForValue().get("age");
//获取 对象
UserInfo u =(UserInfo) redisTemplate.opsForValue().get("userInfo");
//获取 集合对象
List<UserInfo> list1 = (List<UserInfo>)redisTemplate.opsForValue().get("userInfoList");
 

4 redis设置key的失效时间和获取失效时间

//设置key失效时间为2分钟
redisTemplate.opsForValue().set("userName","张三",2, TimeUnit.MINUTES);
//获取失效时间(默认时间单位是秒)
Long one =redisTemplate.getExpire("userName");
System.out.println(one+"");
//获取当前的失效时间(单位秒) 当给指定时间单位后,失效时间已经开始计时
Long two =redisTemplate.getExpire("userName",TimeUnit.SECONDS);
System.out.println(two+"");
//获取当前的失效时间(单位分钟) 当给指定时间单位后,失效时间已经开始计时
Long three =redisTemplate.getExpire("userName",TimeUnit.MINUTES);
System.out.println(three+"");

5 redis 数据自增和自减

@Test
public void three() {
    //设置键one的数据自增,i++
    redisTemplate.opsForValue().increment("one",1);
    int dd = (int) redisTemplate.opsForValue().get("one");
    System.out.println(dd);
}
@Test
public void four() {
    //设置键one的数据递减 i--
    redisTemplate.opsForValue().decrement("one",1);
    int dd = (int) redisTemplate.opsForValue().get("one");
    System.out.println(dd);
}

6 redis 设置获取缓存和清除缓存

//设置缓存
redisTemplate.opsForValue().set("address","成都",2,TimeUnit.MINUTES);
//获取缓存
String address =  (String) redisTemplate.opsForValue().get("address");
System.out.println("删除之前="+address);
//清除缓存
boolean is = redisTemplate.delete("address");
System.out.println(is);
String addresss =  (String) redisTemplate.opsForValue().get("address");
System.out.println("删除之后="+addresss);

**案例:测试缓存提取数据效率高于数据库读取**

//定义一个键名;
String key = "myClass";
long startTime = System.currentTimeMillis();   //获取开始时间
//查询数据库的数据
List<MyClass> list = myClassMapper.selectList(null);
long endTime = System.currentTimeMillis(); //获取结束时间
System.out.println("数据程序运行时间: " + (endTime - startTime) + "ms");
 
long startTime1 = System.currentTimeMillis();   //获取开始时间
//获取缓存数据
List<MyClass> list = (List<MyClass>) redisTemplate.opsForValue().get(key);
long endTime1 = System.currentTimeMillis(); //获取结束时间
System.err.println("缓存数据程序运行时间: " + (endTime1 – startTime1) + "ms");

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值