1.1Redis简介
l Redis 是一个高性能的开源的、C语言写的Nosql(非关系型数据库),数据保存在内存中。
l Redis 是以key-value形式存储,和传统的关系型数据库不一样。不一定遵循传统数据库的一些基本要求,比如说,不遵循sql标准,事务,表结构等等,非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。
l Java中数据结构:String,数组,list,set map…
l Redis提供了很多的方法,可以用来存取各种数据结构的数据
1.2 什么是NoSql
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,它泛指非关系型的数据库。随着互联网2003年之后web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的交友类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
1.3 为什么用redis
1.数据保存在内存,存取速度快,并发能力强
2.它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、 zset(sorted set --有序集合)和hash(哈希类型)。
3.redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库(如MySQL)起到很好的补充作用。
4.它提供了Java,C/C++,C#,PHP,JavaScript等客户端,使用很方便。
5.Redis支持集群(主从同步)。数据可以主服务器向任意数量从的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。
6.支持持久化,可以将数据保存在硬盘的文件中
1.4 Redis使用场景
1:缓存,毫无疑问这是Redis当今最为人熟知的使用场景。再提升服务器性能方面非常有效。
2:排行榜,在使用传统的关系型数据库(mysql oracle 等)来做这个事儿,非常的麻烦,而利用Redis的SortSet(有序集合)数据结构能够简单的搞定。
3:利用Redis中原子性的自增操作,我们可以统计类似用户点赞数、用户访问数等,这类操作如果用MySQL,频繁的读写会带来相当大的压力;限速器比较典型的使用场景是限制某个用户访问某个API的频率,常用的有抢购时,防止用户疯狂点击带来不必要的压力;
4: 一些频繁被访问的数据,经常被访问的数据如果放在关系型数据库,每次查询的开销都会很大,而放在redis中,因为redis 是放在内存中的可以很高效的访问
2 springboot整合redis 环境搭建
1 导入依赖
<!-- !redis-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
2 加入配置
#=======redis连接池配置==============
# Redis数据库索引(默认为0)
spring.redis.database=0
# Redis服务器地址
spring.redis.host=127.0.0.1
# Redis服务器连接端口
spring.redis.port=6379
# Redis服务器连接密码(默认为空)
spring.redis.password=
# 连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=20
# 连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=-1
# 连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=10
# 连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=0
# 连接超时时间(毫秒)
spring.redis.timeout=0
3 创建redis配置类RedisConfig
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.boot.autoconfigure.AutoConfigureAfter;
import org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.interceptor.KeyGenerator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.cache.RedisCacheWriter;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializationContext;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import java.lang.reflect.Method;
@Configuration
@EnableCaching // 启用缓存,使用 Lettuce,自动注入配置的方式
@AutoConfigureAfter(RedisAutoConfiguration.class)
public class RedisConfig extends CachingConfigurerSupport {
//缓存管理器
@Bean
@SuppressWarnings("all")
public CacheManager cacheManager(LettuceConnectionFactory factory) {
RedisCacheWriter writer = RedisCacheWriter.lockingRedisCacheWriter(factory);
RedisSerializationContext.SerializationPair pair =
RedisSerializationContext.SerializationPair.fromSerializer(
new Jackson2JsonRedisSerializer(Object.class));
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
return new RedisCacheManager(writer, config);
}
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
redisTemplate.setConnectionFactory(connectionFactory);
// String 序列化方式
StringRedisSerializer stringSerializer = new StringRedisSerializer();
// 使用Jackson2JsonRedisSerialize替换默认序列化
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
ObjectMapper objectMapper = new ObjectMapper();
objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
objectMapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(objectMapper);
// 设置key的序列化规则
redisTemplate.setKeySerializer(stringSerializer);
redisTemplate.setHashKeySerializer(stringSerializer);
// 设置value的序列化规则
redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
return redisTemplate;
}
// 重新定义缓存 key 的生成策略
@Bean
@Override
public KeyGenerator keyGenerator() {
return new KeyGenerator() {
@Override
public Object generate(Object target, Method method, Object... params){
StringBuilder sb = new StringBuilder();
sb.append(target.getClass().getName());
sb.append(method.getName());
for(Object obj:params){
sb.append(obj.toString());
}
return sb.toString();
}
};
}
}
3 redis 数据设置和获取
//设置字符串
redisTemplate.opsForValue().set("userName","张三");
//设置数字
redisTemplate.opsForValue().set("age",23);
UserInfo userInfo = new UserInfo();
userInfo.setUserName("rock");
userInfo.setUserPwd("123");
//设置对象
redisTemplate.opsForValue().set("userInfo",userInfo);
List<UserInfo> list = new ArrayList<>();
for(int i=0;i<3;i++){
UserInfo gg = new UserInfo();
gg.setUserName("rock"+i);
gg.setUserPwd("123"+i);
list.add(gg);
}
//设置集合对象
redisTemplate.opsForValue().set("userInfoList",list);
//获取 字符串
String userName = redisTemplate.opsForValue().get("userName")+"";
//获取 数字
int age =(int) redisTemplate.opsForValue().get("age");
//获取 对象
UserInfo u =(UserInfo) redisTemplate.opsForValue().get("userInfo");
//获取 集合对象
List<UserInfo> list1 = (List<UserInfo>)redisTemplate.opsForValue().get("userInfoList");
4 redis设置key的失效时间和获取失效时间
//设置key失效时间为2分钟
redisTemplate.opsForValue().set("userName","张三",2, TimeUnit.MINUTES);
//获取失效时间(默认时间单位是秒)
Long one =redisTemplate.getExpire("userName");
System.out.println(one+"");
//获取当前的失效时间(单位秒) 当给指定时间单位后,失效时间已经开始计时
Long two =redisTemplate.getExpire("userName",TimeUnit.SECONDS);
System.out.println(two+"");
//获取当前的失效时间(单位分钟) 当给指定时间单位后,失效时间已经开始计时
Long three =redisTemplate.getExpire("userName",TimeUnit.MINUTES);
System.out.println(three+"");
5 redis 数据自增和自减
@Test
public void three() {
//设置键one的数据自增,i++
redisTemplate.opsForValue().increment("one",1);
int dd = (int) redisTemplate.opsForValue().get("one");
System.out.println(dd);
}
@Test
public void four() {
//设置键one的数据递减 i--
redisTemplate.opsForValue().decrement("one",1);
int dd = (int) redisTemplate.opsForValue().get("one");
System.out.println(dd);
}
6 redis 设置获取缓存和清除缓存
//设置缓存
redisTemplate.opsForValue().set("address","成都",2,TimeUnit.MINUTES);
//获取缓存
String address = (String) redisTemplate.opsForValue().get("address");
System.out.println("删除之前="+address);
//清除缓存
boolean is = redisTemplate.delete("address");
System.out.println(is);
String addresss = (String) redisTemplate.opsForValue().get("address");
System.out.println("删除之后="+addresss);
**案例:测试缓存提取数据效率高于数据库读取**
//定义一个键名;
String key = "myClass";
long startTime = System.currentTimeMillis(); //获取开始时间
//查询数据库的数据
List<MyClass> list = myClassMapper.selectList(null);
long endTime = System.currentTimeMillis(); //获取结束时间
System.out.println("数据程序运行时间: " + (endTime - startTime) + "ms");
long startTime1 = System.currentTimeMillis(); //获取开始时间
//获取缓存数据
List<MyClass> list = (List<MyClass>) redisTemplate.opsForValue().get(key);
long endTime1 = System.currentTimeMillis(); //获取结束时间
System.err.println("缓存数据程序运行时间: " + (endTime1 – startTime1) + "ms");