MapReduce高级-读写数据库

16 篇文章 2 订阅
7 篇文章 0 订阅

MapReduce 读取数据库

为什么要读写数据库

本质上讲数据库是存储数据的介质,MapReduce是处理数据的计算引擎。通常企业会使用关系型数据库(RDBMS)来存储业务的相关数据,随着业务数据的规模越来越大,不可避免的存在性能下降的问题,这里存在两个说法:

  • 百度: MySQL单表数据量大于2000万行,性能会明显下降
  • 案例:单表行数超过500w行或者单表容量大于2G,推荐使用分库分表

此时我们可以通过使用MapReduce从MySQL中定期迁移使用频率比较低的历史数据到HDFS中:

  • 一方面可以降低MySQL的存储核计算负载
  • 通过分布式计算引擎可以更加高效的处理过去的历史数据

如何实现读写数据库

对于MapReduce框架来说,使用InputFormart进行读取数据,读取的数据首先由Mapper 进行处理,然后交给Reduce处理,最终使用OutputFormat进行数据的输出操作,默认情况下,输入输出的组件实现都是针对文本数据处理的,分别是TextInputFormat、TextOutputFormat。

为了方便MapReduce直接访问关系型数据库(MySQL、Oracle),Hadoop提供了DBInputFormat、DBOutputFormat两个类,其中DBInputForm负责从数据库读取数据,而DBOutputFormat负责把数据写入数据库中

image-20230419084624025

使用测试

需求

在MySQL中shop数据库下的produce中的数据导出存放在指定的文件系统目录下。

那么传统的读取方式肯定不行,那么采用什么方式来读取呢?

DBInputFormat

DBInputFormat类用于从SQL表中读取数据,底层一行一行的读取表中的数据,返回<K,V>键值对,

其中K是LongWritable类型,表示表中数据的记录行号,从0开始

V是DBWritable类型,表示该行数据对应的对象类型

DBInputFormat能够读取MySQL本质上还是在底层封装了JDBC,所以在后续项目中还要加上JDBC的驱动

读取MySQL数据

DBInputFormat在底层封装了MySQL,那么在使用的过程中,就需要加上JDBC的驱动,后续为了方便,这里也加上了lombok的依赖来简化开发

POM文件整体

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.wxk</groupId>
    <artifactId>HDFS-HDFS2Test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.1.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.1.4</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.13</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.25</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.26</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-jar-plugin</artifactId>
                <version>2.4</version>
                <configuration>
                    <archive>
                        <manifest>
                            <addClasspath>true</addClasspath>
                            <classpathPrefix>lib/</classpathPrefix>
                            <mainClass>MapReduceTest.WordDriver</mainClass>
                        </manifest>
                    </archive>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

编写Bean文件

在编写Bean文件的时候需要实现Writable和DBWritable这两个接口

package MapReduceTest.DB.Reader;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.lib.db.DBWritable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

/**
 * @author wxk
 * @date 2023/04/19/17:39
 */
@Data
@NoArgsConstructor
@AllArgsConstructor
public class OrderBean implements Writable, DBWritable {
    private int id;
    private String order;
    private String time;

    @Override
    public String toString() {
        return id + "\t" + order + "\t" +time;
    }

    // 序列化方法,将数据写出去
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(id);
        out.writeUTF(order);
        out.writeUTF(time);
    }

    //序列化方法,将数据读取进来
    @Override
    public void readFields(DataInput in) throws IOException {
        this.id = in.readInt();
        this.order=in.readUTF();
        this.time= in.readUTF();
    }

    //序列化 写入数据库
    @Override
    public void write(PreparedStatement ps) throws SQLException {
        ps.setInt(1,id);
        ps.setString(2,order);
        ps.setString(3,time);
    }

    //将查询结果赋予给此对象
    @Override
    public void readFields(ResultSet resultSet) throws SQLException {
        this.id=resultSet.getInt(1);
        this.order=resultSet.getString(2);
        this.time=resultSet.getString(3);
    }
}

编写Mapper文件

在配置Mapper文件中,我们需要了解一下信息:

Mapper中的类型表示的输入输出的KV的格式:输入的K是Long类型,V是GoodsBean类型,输出的K是Long类型,V是字符串类型。这里输入的KEY是字符串类型是因为K是一个偏移量,表示当前读取的是哪一行,后续可以根据自己的想法进行设置

package MapReduceTest.DB.Reader;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author wxk
 * @date 2023/04/19/9:53
 */
public class ReaderMapper extends Mapper<LongWritable,OrderBean,LongWritable, Text> {
    Text out =new Text();
    @Override
    protected void map(LongWritable key, OrderBean value, Context context) throws IOException, InterruptedException {
        out.set(value.toString());
        context.write(key,out);
    }
}

配置运行的Driver驱动

package MapReduceTest.DB.Reader;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @author wxk
 * @date 2023/04/19/9:59
 */
public class ReaderDriver {
    public static void main(String[] args) throws Exception {
        //配置文件对象
        Configuration conf = new Configuration();
        //配置当前作业需要的JDBC密码
        DBConfiguration.configureDB(
                conf,
                "com.mysql.cj.jdbc.Driver",
                "jdbc:mysql://localhost:3306/shop",
                "root",
                "20020219"
        );
        //创建作业的job
        Job job = Job.getInstance(conf, ReaderDriver.class.getSimpleName());
        //设置MapReduce的输出格式
        job.setJarByClass(ReaderDriver.class);
        job.setMapperClass(ReaderMapper.class);
        //key的格式
        job.setOutputKeyClass(LongWritable.class);
        //value的格式
        job.setOutputValueClass(Text.class);
        //不需要Reduce阶段,就把ReduceTask设置为 表明不在执行MapReduce
        job.setNumReduceTasks(0);
        //设置输入组件
        job.setInputFormatClass(DBInputFormat.class);
        FileOutputFormat.setOutputPath(job,new Path("E://mysql_out"));
        DBInputFormat.setInput(
                job,
                OrderBean.class,
                "select * from `order`",
                "select count(*) from `order`");
        final boolean b = job.waitForCompletion(true);
        System.out.println(b ? 0:1);

    }
}

运行之后,查看文件夹:

image-20230419172517196

查看文件:

image-20230419175755642

对比数据库:

image-20230419175815938

可见任务基本完成

这里有一个小细节,就是输出文件名和之前的不一样,在这里中间是m,而之前是r如图:

image-20230419173132644

这里输出是m是因为Reduce环节根本就没有进行,所以是m而不是r,而之前的是因为走的是全流程,最后经过了Reduce的处理,结果是r

如果经过了Reduce操作,那么输出文件中是r,如果仅仅经过了Map的处理,那么就是m

写入MySQL数据

将数据库中的数据进行清空,然后进行一个配置

Map
package MapReduceTest.DB.Writer;

import MapReduceTest.DB.Reader.OrderBean;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author wxk
 * @date 2023/04/19/20:05
 */
public class WriteDBMapper extends Mapper<LongWritable, Text, NullWritable, OrderBean> {
    OrderBean outValue = new OrderBean();
    NullWritable outKey = NullWritable.get();
    private final static int INCR_NUMBER = 1;

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //计数器的模拟
        Counter sc = context.getCounter("wxk", "sc_counter");
        Counter fe = context.getCounter("wxk", "fe_counter");


        String[] split = value.toString().split("\t");
        if (split.length != 4) {
            //长度不为4表明数据不合法
            fe.increment(INCR_NUMBER);
        } else {
            outValue.setId(Integer.parseInt(split[1]));
            outValue.setOrder(split[2]);
            outValue.setTime(split[3]);
            context.write(outKey,outValue);
            //合法数据,就加一
            sc.increment(INCR_NUMBER);
        }
    }
}

Reduce
package MapReduceTest.DB.Writer;

import MapReduceTest.DB.Reader.OrderBean;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author wxk
 * @date 2023/04/19/20:27
 */
//在这里输出的时候Key必须为DBWritable类,V随意,因为最终是将K写入到数据库中
public class WriteDBReduce extends Reducer<NullWritable, OrderBean, OrderBean, NullWritable> {
    NullWritable outValue = NullWritable.get();

    @Override
    protected void reduce(NullWritable key, Iterable<OrderBean> values, Context context) throws IOException, InterruptedException {
        for (OrderBean item : values) {
            context.write(item, outValue);
        }
    }
}

Driver
package MapReduceTest.DB.Writer;

import MapReduceTest.DB.Reader.OrderBean;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import java.io.IOException;

/**
 * @author wxk
 * @date 2023/04/19/20:32
 */
public class WriteDBDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        DBConfiguration.configureDB(
                conf,
                "com.mysql.cj.jdbc.Driver",
                "jdbc:mysql://localhost:3306/shop?useSSL=false&useUnicode=true&characterEncoding=utf8&serverTimezone=GMT%2B8&allowPublicKeyRetrieval=true",
                "root",
                "20020219"
        );
        Job job = Job.getInstance(conf,WriteDBDriver.class.getSimpleName());
        //设置Mapper驱动
        job.setMapperClass(WriteDBMapper.class);
        //设置驱动
        job.setJarByClass(WriteDBDriver.class);
        //设置Mapper输出Key的类型
        job.setMapOutputKeyClass(NullWritable.class);
        //设置Mapper输出Value的类型
        job.setMapOutputValueClass(OrderBean.class);
        //设置Reduce
        job.setReducerClass(WriteDBReduce.class);
        //设置Reduce输出的Key的类型
        job.setOutputKeyClass(OrderBean.class);
        //设置Reduce输出Value的类型
        job.setOutputValueClass(NullWritable.class);
        //设置输入路径
        FileInputFormat.setInputPaths(job,new Path("E://mysql_out"));
        //设置输出格式
        job.setOutputFormatClass(DBOutputFormat.class);
        //配置作业协入数据库的表/字段
        DBOutputFormat.setOutput(job,
                "`order`",
                "id","`order`","time");
        boolean b = job.waitForCompletion(true);
        System.out.println(b ? 0: 1);
    }
}

运行之后:

image-20230419213009532

在这里可以看到成功插入了20条,失败0条

查看MySQL数据库:

image-20230419213114588

插入成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值