蓝桥杯,算法训练 数字游戏C++(DFS算法)

 问题:

  给定一个1~N的排列a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列都比上一次的序列长度少1,最终只剩一个数字。
  例如:
  3 1 2 4
  4 3 6
  7 9
  16
  现在如果知道N和最后得到的数字sum,请求出最初序列a[i],为1~N的一个排列。若有多种答案,则输出字典序最小的那一个。数据保证有解。

输入格式

  第1行为两个正整数n,sum

输出格式

  一个1~N的一个排列

样例输入

4 16

样例输出

3 1 2 4

数据规模和约定

  0<n<=10


思路解析:

        这个问题在于排列出n个数的所有情况,然后按照题目要求以此判断是否符合条件,全排序可运用深度优先搜索算法 (DFS),一条路走到底。每排列出n个数便进行条件判断,代码中附有详情解释。再者运用dp数组,记录每次排序后的数值,方便进行条件判断。

        此题的重点在于是否掌握全排列算法,即深度优先搜索(DFS),如果不懂还得去学习理解,这样便能轻松解决这道问题。

代码:

#include<iostream>
using namespace std;

#define N 11

int n;
int sum;
int dp[N];
int used[N] = {0};	//标志数字是否被使用,0未使用,1已使用

void DFS(int step) {
	
	/*
	传进来之前进行step判断,是否已经刚好列出了n个数,
	然后运动dp数组进行依次求和,判断是否等于sum,若等于则找到
	*/
	if (step == n + 1) {
		//新声明个数组,防止在相加时破坏原数组(dp)内的值
		int s[N];						
		
		//将dp[]的值拷贝到s[]里
		for (int i = 1; i <= n; i++) {
			s[i] = dp[i];
		}

		for (int i = 1; i < n; i++) {		//进行 n-1 次相加
			for (int j = 1; j < n - i + 1; j++) {	//每一次相加所相加的次数
				s[j] += s[j + 1];
			}
		}

		if (s[1] == sum) {
			for (int i = 1; i <= n; i++) {
				cout << dp[i] << " ";
			}
			exit(0);		//找到最小值,正常退出程序
		}
		else
		{
			return;			//返回上一级DFS
		}
	}

	for (int i = 1; i <= n; i++){
		if (used[i] == 0) {
			dp[step] = i;	//将i存入第step个数
			used[i] = 1;	//记录已使用
			DFS(step + 1);
			used[i] = 0;	//回收i,标记未使用,以便后面排序重新使用i
		}
	}
	return;			//回溯,返回上一级DFS
}

int main() {
	cin >> n >> sum;
	DFS(1);
	return 0;
}

运行结果:

 PS:学习就是进步,Love 😘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值