一、四皇后问题
1.八皇后问题
在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。如果经过±90度、±180度旋转,和对角线对称变换的摆法看成一类,共有42类。计算机发明后,有多种计算机语言可以编程解决此问题。
2.四皇后
四皇后问题是一张四乘四的棋盘,在棋盘中放四颗棋子,要求如下:任意两个皇后都不能处在同一行、同一列 任意两个皇后都不能处在同一斜线上(主斜线、反斜线)。
四皇后是八皇后的衍生版本,其原理都是一样的。八皇后说的是在8×8的国际棋盘上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法?八皇后一共有92种解法。而四皇后是在一个4×4的棋盘上摆放4个皇后。
要求
任意两个皇后都不能处在同一行、同一列
任意两个皇后都不能处在同一斜线上(主斜线、反斜线)
二、具体实现
1.搜索原理图
2.算法流程图
3.代码实现
#include<iostream>
using namespace std;
int n=4,num = 0; //num记录可行解个数
int **t = (int**)malloc(n*sizeof(int*)); //动态分配二维数组
void outPrint(){
//打印结果
if(num>1) cout<<endl;
for(int i=0