描述
若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
输入
三行.第一行m和n,分别表示两个子序列的长度(符号的个数)
接下来两行,分别表示X和Y
输出
最长公共子序列的长度
样例输入
7 6 ABCBDAB BDCABA
样例输出
4
代码:
/*动态规划算法*/
/*最长公共子序列*/
#include<iostream>
using namespace std;
int b[101][101]; // 辅助完成最优解的计算
int c[101][101]; //x[1~i] 和 y[1~j]之间的公共子序列的长度。
int p = 0;
void LSC(int m, int n, char* x, char* y)
{
//数组c的第0行、第0列置0
for (int i = 0; i <= m; i++)
c[i][0] = 0;
for (int j = 0; j <= n; j++)
c[0][j] = 0;
//根据递推公式构造数组c
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++) {
if (x[i] == y[j]) //俩序列在这一下标下中有值相等时
{
c[i][j] = c[i - 1][j - 1] + 1; //公共子序列的长度等于在上一公共子序列上加一,将这个数划为1类
b[i][j] = 1;
}
else if (c[i - 1][j] > c[i][j - 1])
{
c[i][j] = c[i - 1][j];
b[i][j] = 2;
}
else
{
c[i][j] = c[i][j - 1];
b[i][j] = 3;
}
}
}
//1类:序列x的一个值等于序列y的一个值
//2类:当序列x的一个值不等于序列y的一个值时,比较c[i-1][j]和c[i][j-]的值,如果c[i-1][j]更大,将值赋给c[i][j]
//3类:当序列x的一个值不等于序列y的一个值时,比较c[i-1][j]和c[i][j-]的值,如果c[i][j-1]更大,将值赋给c[i][j]
void PrintLSC(int i, int j, char* x, char* y)
{
if (i == 0 || j == 0)
return;
if (b[i][j] == 1)
{
PrintLSC(i - 1, j - 1, x, y);
p = p + 1;
}
else if (b[i][j] == 2)
PrintLSC(i - 1, j, x, y);//此时c[i][j]的值是c[i-1][j]的值,所以转求x[i-1]和y[j]的最长公共子序列
else
PrintLSC(i, j - 1, x, y);//此时c[i][j]的值是c[i][j-1]的值,所以转求x[i]和y[j-1]的最长公共子序列
}
int main()
{
int m, n;
cin >> m >> n;
char* x = new char[m + 1];
char* y = new char[n + 1];
for (int i = 1; i <= m; i++) {
cin >> x[i];
}
for (int i = 1; i <= n; i++) {
cin >> y[i];
}
LSC(m, n, x, y);
PrintLSC(m, n, x, y);
cout << p;
return 0;
}
举个例子
x序列:B D C A B A
y序列:A B C B D A B
数组C的值: