最长公共子序列

描述

若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列。

给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。

给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。

输入

三行.第一行m和n,分别表示两个子序列的长度(符号的个数)
接下来两行,分别表示X和Y

输出

最长公共子序列的长度

样例输入

7 6
ABCBDAB
BDCABA

样例输出

4

代码:

/*动态规划算法*/
/*最长公共子序列*/
#include<iostream>
using namespace std;
int b[101][101];   // 辅助完成最优解的计算
int c[101][101];   //x[1~i] 和 y[1~j]之间的公共子序列的长度。  
int p = 0;
void LSC(int m, int n, char* x, char* y)
{
    //数组c的第0行、第0列置0
    for (int i = 0; i <= m; i++) 
        c[i][0] = 0;
    for (int j = 0; j <= n; j++)  
        c[0][j] = 0;
    //根据递推公式构造数组c  
    for (int i = 1; i <= m; i++)
        for (int j = 1; j <= n; j++) {
            if (x[i] == y[j])          //俩序列在这一下标下中有值相等时
            {
                c[i][j] = c[i - 1][j - 1] + 1;   //公共子序列的长度等于在上一公共子序列上加一,将这个数划为1类
                b[i][j] = 1;
            }
            else if (c[i - 1][j] > c[i][j - 1])
            {
                c[i][j] = c[i - 1][j];          
                b[i][j] = 2;
            }
            else
            {
                c[i][j] = c[i][j - 1]; 
                b[i][j] = 3;
            }
        }
}
//1类:序列x的一个值等于序列y的一个值
//2类:当序列x的一个值不等于序列y的一个值时,比较c[i-1][j]和c[i][j-]的值,如果c[i-1][j]更大,将值赋给c[i][j]
//3类:当序列x的一个值不等于序列y的一个值时,比较c[i-1][j]和c[i][j-]的值,如果c[i][j-1]更大,将值赋给c[i][j]

void PrintLSC(int i, int j, char* x, char* y)
{

    if (i == 0 || j == 0) 
        return;
    if (b[i][j] == 1)
    {
        PrintLSC(i - 1, j - 1, x, y);  
        p = p + 1;
    }
    else if (b[i][j] == 2)
        PrintLSC(i - 1, j, x, y);//此时c[i][j]的值是c[i-1][j]的值,所以转求x[i-1]和y[j]的最长公共子序列
    else
        PrintLSC(i, j - 1, x, y);//此时c[i][j]的值是c[i][j-1]的值,所以转求x[i]和y[j-1]的最长公共子序列
}
int main()
{
    int m, n;
    cin >> m >> n;
    char* x = new char[m + 1];
    char* y = new char[n + 1];
    for (int i = 1; i <= m; i++) {
        cin >> x[i];
    }
    for (int i = 1; i <= n; i++) {
        cin >> y[i];
    }
    LSC(m, n, x, y);
    PrintLSC(m, n, x, y);
    cout << p;
    return 0;
}

举个例子

x序列:B D C A B A

y序列:A B C B D A B

数组C的值:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值