The classification report for knn:
precision recall f1-score support
0.0 0.56 0.60 0.58 102341
1.0 0.92 0.93 0.93 23699
2.0 0.94 0.78 0.85 26864
3.0 0.83 0.82 0.82 22132
4.0 0.85 0.88 0.87 32033
5.0 0.39 0.21 0.27 24646
6.0 0.77 0.89 0.82 24577
7.0 0.80 0.95 0.87 26271
12.0 0.32 0.33 0.33 14281
13.0 0.16 0.22 0.19 12727
16.0 0.90 0.67 0.77 24445
17.0 0.89 0.96 0.92 33034
24.0 0.00 0.00 0.00 7733
accuracy 0.69 374783
macro avg 0.64 0.63 0.63 374783
weighted avg 0.69 0.69 0.68 374783
The classification report for DT:
precision recall f1-score support
0.0 0.57 0.73 0.64 102341
1.0 0.66 0.96 0.78 23699
2.0 0.82 0.86 0.84 26864
3.0 0.93 0.75 0.83 22132
4.0 0.63 0.87 0.73 32033
5.0 0.71 0.86 0.77 24646
6.0 0.91 0.57 0.70 24577
7.0 0.57 0.16 0.24 26271
12.0 0.62 0.65 0.63 14281
13.0 0.68 0.53 0.59 12727
16.0 0.88 0.06 0.11 24445
17.0 0.86 0.85 0.86 33034
24.0 0.40 0.32 0.36 7733
accuracy 0.67 374783
macro avg 0.71 0.63 0.62 374783
weighted avg 0.70 0.67 0.64 374783
The classification report for Bayes:
precision recall f1-score support
0.0 0.62 0.81 0.70 102341
1.0 0.97 0.91 0.94 23699
2.0 1.00 0.65 0.79 26864
3.0 0.60 0.66 0.63 22132
4.0 0.91 0.77 0.83 32033
5.0 1.00 0.00 0.00 24646
6.0 0.87 0.72 0.79 24577
7.0 0.31 0.47 0.37 26271
12.0 0.52 0.59 0.55 14281
13.0 0.61 0.50 0.55 12727
16.0 0.89 0.72 0.79 24445
17.0 0.75 0.91 0.82 33034
24.0 0.59 0.24 0.34 7733
accuracy 0.68 374783
macro avg 0.74 0.61 0.62 374783
weighted avg 0.74 0.68 0.67 374783
无题暂时存
最新推荐文章于 2024-11-03 20:03:09 发布