蛮力法求解幂集问题

这篇博客探讨了如何运用蛮力法来求解幂集问题,通过直接穷举的方式构建集合的所有子集合。以包含1, 2, 3的集合为例,详细阐述了该方法,并给出了相应的程序实现,输出了所有可能的子集。" 120432637,11447689,VR制作技巧:保持LOD为0,消除马赛克现象,"['VR制作', 'UE4引擎', 'UE5引擎', '3D图形', '游戏开发']
摘要由CSDN通过智能技术生成

蛮力法求解幂集问题

直接穷举求解,将1-n存放到数组a中,求解问题变为构造集合a的所有子集合。设集合a[0…2]={1,2,3},其所有集合元素对应的二进制位及其十进制位如下表所示。

集合元素 对应的二进制位 对应的十进制位
{ }
{1} 001 1
{2} 010 2
{1,2} 011 3
{3} 100 4
{1,3} 101 5
{2,3} 110 6
{1,2,3} 111 7

因此对于含有n(n≥1)个元素的集合a,求幂集的过程如下

for(i=0;i<2^n;i++)        //穷举a的所有集合元素并输出
{
     将i转换为二进制b;
   输出b中为1的位对应的a元素构成的一个集合元素;
}

采用直接穷举法求a={1,2,3}的幂集的完整程序如下:

//蛮力法求解幂集问题
#include <stdio.h>
#include <math.h>
#define MaxN 10
void inc(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值