用pytorch实现线性回归步骤:
1、准备数据集
2、设计模型
3、构造损失函数和优化器
4、写训练周期
import torch
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
# LinearModel继承Module
class LinearModel(torch.nn.Module):
def __init__(self):
# LinearModel,self这两个参数可以省略
super(LinearModel, self).__init__()
# Linear是一个类,类后面加括号表示创建一个对象,由Linear创建的对象,包括了权重和偏置这两个Tensor
# 表示输入特征维度为 1,输出特征维度也为 1,bias=True也可以不加,默认值就是true
self.linear = torch.nn.Linear(1, 1, bias=True)
# 函数名必须是forward,因为要重写父类Module里面的forward方法
def forward(self, x):
# 对象后面加括号是为了实现一个可调用的对象,当然必须在这个类里面加一个__call__方法,对于Linear类来说,他继承了Module这个类,Module这个类实现了__call__方法
# 这一步会执行线性变换操作,即将输入x乘以权重矩阵,并加上偏置向量。具体计算如下:output=input×weight+bias
y_pred = self.linear(x)
return y_pred
model = LinearModel()
# torch.nn.MSELoss: 是 PyTorch 提供的均方误差损失函数类。均方误差损失函数通常用于回归问题,计算预测值与真实值之间的差异。
criterion = torch.nn.MSELoss(size_average=False)
# torch.optim.SGD: 是 PyTorch 提供的随机梯度下降优化器类。SGD 是一种常用的优化算法,用于更新模型权重
# model.parameters()会把模型里面涉及到的要进行训练的权重全部找出来
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(100):
# PyTorch内部会自动调用model对象的__call__方法。
# __call__方法会在内部调用model对象所属类(即 LinearModel)中的forward方法
# 将输入数据x_data作为参数传递给forward方法
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss)
# 将权重里梯度的数据全部清零
optimizer.zero_grad()
# 自动计算损失函数关于权重w的梯度
loss.backward()
# 更新模型权重
optimizer.step()
print('w=', model.linear.weight.item())
print('b=', model.linear.bias.item())
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred=', y_test.data)