【算法】判断一个数是否是质数的四种常用方法
算法1:暴力枚举
时间复杂度为O(n2)
bool is_prime(int n){
if(n < 2) return false; //2是最小的质数,如果n小于2,那n肯定就不是质数
for(int i = 2;i < n;i ++){ //这个很好理解,从最小的质数2开始枚举到n - 1
if(n % i == 0){ //如果可以被i整除,说明这个数不是质数
return false; //返回不是
}
}
return true; //返回是
}
算法2:使用根号sqrt优化
由于sqrt(n) x sqrt(n)<=n
,所以n中只能包含一个sqrt(n)
的质因子
bool is_prime(int n){
if(n < 2) return false; //2是最小的质数,如果n小于2,那n肯定就不是质数
for(int i = 2;i <= sqrt(n);i ++){ //优化部分
if(n % i == 0){ //如果可以被i整除,说明这个数不是质数
return false; //返回不是
}
}
return true; //返回是
}
不推荐使用,原因:sqrt
函数运行很慢,每次执行都需要运行
也可以稍微优化一下,定义一个变量存储sqrt(n)
的值
bool is_prime(int n){
if(n < 2) return false; //2是最小的质数,如果n小于2,那n肯定就不是质数
int x = sqrt(n);
for(int i = 2;i <= x;i ++){ //优化部分
if(n % i == 0){ //如果可以被i整除,说明这个数不是质数
return false; //返回不是
}
}
return true; //返回是
}
算法三:使用i*i<=n优化
bool is_prime(int n){
if(n < 2) return false;
for(int i = 2;i * i <= n;i ++){ //和用根号差不多
if(n % i == 0){
return false;
}
}
return true;
}
不推荐使用,原因:i*i
可能会溢出int范围
算法四:使用i<=n/i优化
bool is_prime(int n){
if(n < 2) return false;
for(int i = 2;i <= n / i;i ++){ //优化内容
if(n % i == 0){
return false;
}
}
return true;
}
同时避免算法二、算法三的问题