【算法】判断一个数是否是质数的四种常用方法

【算法】判断一个数是否是质数的四种常用方法

算法1:暴力枚举

时间复杂度为O(n2)

bool is_prime(int n){
    if(n < 2) return false; //2是最小的质数,如果n小于2,那n肯定就不是质数
    for(int i = 2;i < n;i ++){ //这个很好理解,从最小的质数2开始枚举到n - 1
        if(n % i == 0){ //如果可以被i整除,说明这个数不是质数
            return false; //返回不是
        }
    }
    return true; //返回是
}

算法2:使用根号sqrt优化

由于sqrt(n) x sqrt(n)<=n,所以n中只能包含一个sqrt(n)的质因子

bool is_prime(int n){
    if(n < 2) return false; //2是最小的质数,如果n小于2,那n肯定就不是质数
    for(int i = 2;i <= sqrt(n);i ++){ //优化部分
        if(n % i == 0){ //如果可以被i整除,说明这个数不是质数
            return false; //返回不是
        }
    }
    return true; //返回是
}

不推荐使用,原因:sqrt函数运行很慢,每次执行都需要运行

也可以稍微优化一下,定义一个变量存储sqrt(n)的值

bool is_prime(int n){
    if(n < 2) return false; //2是最小的质数,如果n小于2,那n肯定就不是质数
    int x = sqrt(n);
    for(int i = 2;i <= x;i ++){ //优化部分
        if(n % i == 0){ //如果可以被i整除,说明这个数不是质数
            return false; //返回不是
        }
    }
    return true; //返回是
}

算法三:使用i*i<=n优化

bool is_prime(int n){
    if(n < 2) return false;
    for(int i = 2;i * i <= n;i ++){ //和用根号差不多
        if(n % i == 0){
            return false;
        }
    }
    return true;
}

不推荐使用,原因:i*i可能会溢出int范围

算法四:使用i<=n/i优化

bool is_prime(int n){
    if(n < 2) return false;
    for(int i = 2;i <= n / i;i ++){ //优化内容
        if(n % i == 0){
            return false;
        }
    }
    return true;
}

同时避免算法二、算法三的问题

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值