给定一个 n 个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。
允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。
传送门
dfn[i]表示第一次访问到i点的时间,low[i]表示i点能回溯到的最早时间(即所在环的最早访问时间)
将强联通块缩点后,再记忆化搜一遍每个点的最大权值和
//tarjan缩点 找权值最大的路径
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <vector>
using namespace std;
#define IOS ios::sync_with_stdio(false)
#define _for(i,a,b) for(int i=(a) ;i<=(b) ;i++)
#define _rep(i,a,b) for(int i=(a) ;i>=(b) ;i--)
#define mst(v,s) memset(v,s,sizeof(v))
#define pb push_back
#define int long long
#define inf 0x3f3f3f3f
typedef long long ll;
const int N=1e5+10;
vector<int > G[N*2];
int n,m;
int x[N],y[N],a[N],f[N],dfn[N],low[N];//dfn第一次访问 low时间戳
int sta[N],pd[N],top;//栈 是否在栈中 栈顶指针
int col[N];//缩点后每个点所在的强联通块
int sum[N];//每个强联通块的权值
int ti,tot,ans;//时间 总的强联通块数量 答案
void tarjan(int x)
{
sta[++top]=x;//入栈
dfn[x]=low[x]=++ti;//按照访问时间给dfn和时间戳赋值
pd[x]=1;//入栈
for(int i=0 ;i<G[x].size() ;i++)
{
int y = G[x][i];
//第一种更新方式,没访问过的边去访问
if( dfn[y] == 0 )
{
tarjan(y);
low[x] =min(low[x],low[y]);
}
//第二种更新方式,所连的边之前已经访问过,说明x可以回溯到更早的时间
else if( pd[y] ) low[x] =min(low[x] ,low[y]);
}
if( dfn[x] == low[x])//时间戳不变,说明无法更新了,强联通块到此可以打包
{
tot++;
while( sta[top+1] != x)//如果x还没退栈
{
col[sta[top]]=tot;//在x上方的元素打包在一起
sum[tot] += a[sta[top]];//计算连通块权值和
pd[sta[top--]]=0;//退栈(更新pd 和 stack)
}
}
}
void dfs(int x)//找权值和最大的路径
{
if( f[x] ) return;//记忆化,松弛过的点不用松了,因为单向图
f[x] = sum[x];
int temp =0;
for(int i=0 ;i<G[x].size() ;i++)
{
int y = G[x][i];
if( !f[y] ) dfs(y);
temp = max(temp ,f[y]);//每次松弛找权值和最大的儿子
}
f[x] += temp;
}
void solve()
{
_for(i,1,n)
{
if( !dfn[i]) tarjan(i);
}
//缩点后重新建图
mst(G,0);
_for(i,1,m)
{
if( col[x[i]]!=col[y[i]])//两个点不在同一个强联通块里
G[col[x[i]]].pb(col[y[i]]);
}
_for(i,1,tot)
{
// cout<<i<<endl;
if( !f[i])
{
dfs(i);
ans =max(ans, f[i]);
}
}
cout<<ans<<endl;
}
signed main()
{
IOS;
///!!!
// freopen("data.txt","r",stdin);
///!!!
cin>>n>>m;
_for(i,1,n) cin>>a[i];
_for(i,1,m)
{
cin>>x[i]>>y[i];
G[x[i]].pb(y[i]);
}
solve();
}