Pandas数据清洗和常用函数

数据清洗

数据清洗是对一些没用的数据进行处理的过程。

当数据出现确实、数据格式错误、错误数据或重复数据的情况,如果我们想要分析的更加准确,就要对没用的数据进行处理。

此时我们学习采用菜鸟教程的数据作为案例,如下图所示。

在这里插入图片描述

在途中包含的错误数据有:

  • n/a
  • NA
  • na

清洗空值

使用 dropna() 方法,语法格式如下:

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数说明

  • axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列
  • how:默认为 ‘any’ 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how=‘all’ 一行(或列)都是 NA 才去掉这整行。
  • thresh:设置需要多少非空值的数据才可以保留下来的。
  • subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。
  • inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据。

判断是否为空

通过 isnull() 判断各个单元格是否为空。

df = pd.read_csv('property-data.csv')
print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

在这里插入图片描述

使用该方法,将 n/a 和 NA 当作空数据,na 不是空数据,这样与我们先前指定的目标是不一样的。

当然 Pandas 支持我们指定空类型。

missing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)

print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

在这里插入图片描述

删除空行

使用 dropna() 方法进行删除,在删除后返回一个新的 DataFrame 对象,不会修改源数据。

df = pd.read_csv('property-data.csv')
new_df = df.dropna()
print(new_df.to_string())

在这里插入图片描述

如果需要修改源数据,则将参数 inplace 设置为 True

df = pd.read_csv('property-data.csv')
df.dropna(inplace = True)
print(df.to_string())

移除指定列有空值的行

df = pd.read_csv('property-data.csv')
df.dropna(subset=['ST_NUM'], inplace = True)
print(df.to_string())

在这里插入图片描述

替换空字段

使用 fillna() 方法替换空字段

df = pd.read_csv('property-data.csv')
# 替换空串
df.fillna(12345, inplace = True)
print(df.to_string())

在这里插入图片描述

在日常操作中,替换空单元格是常见的行为,直接替换为指定值在大多数情况下都不合适。

替换空单元格的常用方法是计算列的均值、中位数值或众数。

Pandas使用 mean()median()mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。

df = pd.read_csv('property-data.csv')
# 读取均值
x = df["ST_NUM"].mean()
df["ST_NUM"].fillna(x, inplace = True)
print(df.to_string())

清洗数据错误

数据错误也是经常出现的情况,我们可以对错误的数据进行替换或者移除。

修改错误数据

修改错误数据,直接指定坐标即可,如下修改不正确的年龄。

person = {
    "name": ['Google', 'Runoob', 'Taobao'],
    "age": [50, 40, 12345]  # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
for idx in df.index:
    if df.loc[idx, 'age'] > 100 or df.loc[idx, 'age'] < 0:
        # 修改数据
        df.loc[idx, 'age'] = 30
print(df.to_string())

也可以直接删除行

person = {
    "name": ['Google', 'Runoob', 'Taobao'],
    "age": [50, 40, 12345]  # 12345 年龄数据是错误的
}
df = pd.DataFrame(person)
for idx in df.index:
    if df.loc[idx, 'age'] > 100 or df.loc[idx, 'age'] < 0:
        df.drop(idx,inplace = True)
print(df.to_string())

清洗重复数据

Pandas 清洗重复数据,使用 duplicated() 和 drop_duplicates() 方法

如果对应的数据是数据是重复的,duplicated() 会返回 True ,否则返回 False。

person = {
  "name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
  "age": [50, 40, 40, 23]  
}
df = pd.DataFrame(person)

print(df.duplicated())

在这里插入图片描述

删除重复数据,采用 drop_duplicates() 方法。

persons = {
  "name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
  "age": [50, 40, 40, 23]  
}
df = pd.DataFrame(persons)
df.drop_duplicates(inplace = True)
print(df)

在这里插入图片描述

常用函数

读取数据

函数说明
pd.read_csv(filename)读取 CSV 文件;
pd.read_excel(filename)读取 Excel 文件;
pd.read_sql(query, connection_object)从 SQL 数据库读取数据;
pd.read_json(json_string)从 JSON 字符串中读取数据;
pd.read_html(url)从 HTML 页面中读取数据。

查看数据

函数说明
df.head(n)显示前 n 行数据;
df.tail(n)显示后 n 行数据;
df.info()显示数据的信息,包括列名、数据类型、缺失值等;
df.describe()显示数据的基本统计信息,包括均值、方差、最大值、最小值等;
df.shape显示数据的行数和列数。

数据清洗

函数说明
df.fillna(value)将缺失值替换为指定的值;
df.replace(old_value, new_value)将指定值替换为新值;
df.duplicated()检查是否有重复的数据;
df.drop_duplicates()删除重复的数据。
df.dropna()删除包含缺失值的行或列;

数据选择和切片

函数说明
df[column_name]选择指定的列;
df.loc[row_index, column_name]通过标签选择数据;
df.iloc[row_index, column_index]通过位置选择数据;
df.ix[row_index, column_name]通过标签或位置选择数据;
df.filter(items=[column_name1, column_name2])选择指定的列;
df.filter(regex=‘regex’)选择列名匹配正则表达式的列;
df.sample(n)随机选择 n 行数据。

数据排序

函数说明
df.sort_values(column_name)按照指定列的值排序;
df.sort_values([column_name1, column_name2], ascending=[True, False])按照多个列的值排序;
df.sort_index()按照索引排序。

数据分组和聚合

函数说明
df.groupby(column_name)按照指定列进行分组;
df.aggregate(function_name)对分组后的数据进行聚合操作;
df.pivot_table(values, index, columns, aggfunc)生成透视表。

数据合并

函数说明
pd.concat([df1, df2])将多个数据框按照行或列进行合并;
pd.merge(df1, df2, on=column_name)按照指定列将两个数据框进行合并。

数据选择和过滤

函数说明
df.loc[row_indexer, column_indexer]按标签选择行和列。
df.iloc[row_indexer, column_indexer]按位置选择行和列。
df[df[‘column_name’] > value]选择列中满足条件的行。
df.query(‘column_name > value’)使用字符串表达式选择列中满足条件的行。

数据统计和描述

函数说明
df.describe()计算基本统计信息,如均值、标准差、最小值、最大值等。
df.mean()计算每列的平均值。
df.median()计算每列的中位数。
df.mode()计算每列的众数。
df.count()计算每列非缺失值的数量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值