Spring AI 集成多个大语言模型

Spring AI 集成多个大语言模型

说明

本文档旨在指导开发者基于 Spring AI 框架,在 Spring Boot 2 环境下集成多种主流大语言模型(如 OpenAI ChatGPT、Deepseek、阿里云通义千问等),并提供从环境配置、模型调用、流式输出到提示模板与异常处理的完整使用示例。文中示例适配 Spring AI 进行开发。本教程适用于对 LLM 应用开发有一定基础的 Java 工程师,亦可作为企业多模型接入与管理的实现参考。

1. 环境准备

1.1 添加依赖

首先,在您的 pom.xml 中添加 Spring AI 和相关依赖:

<dependencies>
    <!-- Spring Boot Starter -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter</artifactId>
        <version>2.7.x</version> <!-- 使用兼容Java 8的版本 -->
    </dependency>

    <!-- Spring AI Core -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-core</artifactId>
    </dependency>

    <!-- 阿里云通义千问 -->
    <dependency>
        <groupId>com.alibaba.cloud.ai</groupId>
        <artifactId>spring-ai-alibaba-starter</artifactId>
        <version>1.0.0-M2</version>
    </dependency>
</dependencies>

1.2 配置API密钥(使用application.yml)

application.yml 中配置各模型的API密钥和参数:

spring:
  ai:
    openai:
      api-key: ${OPENAI_API_KEY}
      model: gpt-3.5-turbo
      temperature: 0.7
      base-url: https://api.openai.com/v1
    
    deepseek:
      api-key: ${DEEPSEEK_API_KEY}
      model: deepseek-chat
      base-url: https://api.deepseek.com/v1
    
    alibaba:
      dashscope:
        api-key: ${ALIBABA_DASHSCOPE_API_KEY}
        model: qwen-max
        temperature: 0.8
        top-p: 0.9

server:
  port: 8080

注意:在实际项目中,建议将API密钥存储在环境变量中,而不是直接写在配置文件中,以提高安全性。

2. 基础使用示例

2.1 使用OpenAI ChatGPT

import org.springframework.ai.chat.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class OpenAIDemo implements CommandLineRunner {

    @Autowired
    private ChatClient chatClient;

    public static void main(String[] args) {
        SpringApplication.run(OpenAIDemo.class, args);
    }

    @Override
    public void run(String... args) throws Exception {
        String response = chatClient.call("用中文解释一下量子计算的基本概念");
        System.out.println("OpenAI 响应: \n" + response);
    }
}

2.2 使用Deepseek

import org.springframework.ai.chat.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DeepseekDemo implements CommandLineRunner {

    @Autowired
    @Qualifier("deepseekChatClient")
    private ChatClient chatClient;

    public static void main(String[] args) {
        SpringApplication.run(DeepseekDemo.class, args);
    }

    @Override
    public void run(String... args) throws Exception {
        String response = chatClient.call("用Python写一个快速排序算法");
        System.out.println("Deepseek 响应: \n" + response);
    }
}

2.3 使用阿里云通义千问

import org.springframework.ai.chat.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class AlibabaQianwenDemo implements CommandLineRunner {

    @Autowired
    @Qualifier("alibabaChatClient")
    private ChatClient chatClient;

    public static void main(String[] args) {
        SpringApplication.run(AlibabaQianwenDemo.class, args);
    }

    @Override
    public void run(String... args) throws Exception {
        String response = chatClient.call("写一首关于春天的七言绝句");
        System.out.println("通义千问 响应: \n" + response);
    }
}

3. 高级功能

3.1 多模型切换服务

创建一个统一的服务类来管理不同模型的调用:

import org.springframework.ai.chat.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Service;

import java.util.Map;

@Service
public class MultiModelService {

    private final ChatClient openAIClient;
    private final ChatClient deepseekClient;
    private final ChatClient alibabaClient;

    @Autowired
    public MultiModelService(
            @Qualifier("openAiChatClient") ChatClient openAIClient,
            @Qualifier("deepseekChatClient") ChatClient deepseekClient,
            @Qualifier("alibabaChatClient") ChatClient alibabaClient) {
        this.openAIClient = openAIClient;
        this.deepseekClient = deepseekClient;
        this.alibabaClient = alibabaClient;
    }

    public String askOpenAI(String prompt) {
        return openAIClient.call(prompt);
    }

    public String askDeepseek(String prompt) {
        return deepseekClient.call(prompt);
    }

    public String askAlibabaQianwen(String prompt) {
        return alibabaClient.call(prompt);
    }

    public Map<String, String> askAllModels(String prompt) {
        return Map.of(
            "OpenAI", askOpenAI(prompt),
            "Deepseek", askDeepseek(prompt),
            "Alibaba_Qianwen", askAlibabaQianwen(prompt)
        );
    }
}

3.2 使用提示模板

# 在application.yml中添加提示模板配置
spring:
  ai:
    prompt:
      templates:
        poem-template:
          text: |
            请以{style}风格写一首关于{topic}的诗。
            要求:
            1. 语言优美,意境深远
            2. 包含至少两个修辞手法
            3. 长度在8-12行之间
          input-variables: style, topic

对应的Java代码:

import org.springframework.ai.chat.ChatClient;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class PoemService {

    private final ChatClient chatClient;

    @Autowired
    public PoemService(ChatClient chatClient) {
        this.chatClient = chatClient;
    }

    public String generatePoem(String style, String topic) {
        PromptTemplate promptTemplate = new PromptTemplate("""
            请以{style}风格写一首关于{topic}的诗。
            要求:
            1. 语言优美,意境深远
            2. 包含至少两个修辞手法
            3. 长度在8-12行之间
            """);
        
        promptTemplate.add("style", style);
        promptTemplate.add("topic", topic);
        
        return chatClient.call(promptTemplate.create().getContents());
    }
}

3.3 流式响应

对于需要实时响应的场景,可以使用流式API:

import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.stream.StreamingChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

@RestController
public class StreamingController {

    private final StreamingChatClient streamingChatClient;

    @Autowired
    public StreamingController(StreamingChatClient streamingChatClient) {
        this.streamingChatClient = streamingChatClient;
    }

    @GetMapping("/ai/stream")
    public Flux<String> streamChatResponse(@RequestParam String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        return streamingChatClient.stream(prompt)
                .map(response -> response.getResult().getOutput().getContent());
    }
}

4. 模型特性比较

特性OpenAI ChatGPTDeepseek阿里云通义千问
中文支持良好优秀优秀
代码能力优秀优秀良好
中文创作良好优秀优秀
价格较高中等中等
响应速度很快
最大token数409640962000
适合场景通用技术/代码中文创作

5. 最佳实践建议

  1. 密钥管理:始终将API密钥存储在环境变量或安全的密钥管理系统中,不要直接硬编码在配置文件中。

  2. 模型选择

    • 对于通用场景和英文内容,优先考虑OpenAI ChatGPT
    • 对于中文内容和本地化需求,通义千问表现更佳
    • 对于技术问题和代码生成,Deepseek可能是更好的选择
  3. 错误处理:为每个模型调用添加适当的错误处理和重试机制:

import org.springframework.ai.chat.ChatClient;
import org.springframework.retry.annotation.Retryable;
import org.springframework.stereotype.Service;

@Service
public class RobustAIService {

    private final ChatClient chatClient;

    public RobustAIService(ChatClient chatClient) {
        this.chatClient = chatClient;
    }

    @Retryable(maxAttempts = 3, backoff = @Backoff(delay = 1000, multiplier = 2))
    public String safeChat(String prompt) {
        try {
            return chatClient.call(prompt);
        } catch (Exception e) {
            // 记录日志并执行回退逻辑
            return "当前服务不可用,请稍后再试";
        }
    }
}
  1. 性能优化

    • 对于高频请求,考虑实现缓存机制
    • 使用流式响应改善用户体验
    • 合理设置超时参数
  2. 监控与日志

    • 记录每个模型的响应时间和成功率
    • 监控API使用量和费用
    • 设置告警机制应对服务中断

6. 扩展配置

6.1 高级YAML配置示例

spring:
  ai:
    openai:
      api-key: ${OPENAI_API_KEY}
      model: gpt-4-turbo
      temperature: 0.7
      max-tokens: 1000
      base-url: https://api.openai.com/v1
      embedding:
        model: text-embedding-3-large
        dimensions: 1536
    
    deepseek:
      api-key: ${DEEPSEEK_API_KEY}
      model: deepseek-coder
      temperature: 0.5
      max-tokens: 2048
      base-url: https://api.deepseek.com/v1
    
    alibaba:
      dashscope:
        api-key: ${ALIBABA_DASHSCOPE_API_KEY}
        model: qwen-max-longcontext
        temperature: 0.8
        top-p: 0.9
        enable-search: true
      
    retry:
      max-attempts: 3
      backoff:
        initial-interval: 1s
        multiplier: 2
        max-interval: 5s

server:
  port: 8080
  compression:
    enabled: true

6.2 动态配置更新

结合Nacos实现动态配置更新:

  1. 添加Nacos依赖
  2. 配置Nacos服务器地址
  3. 使用@RefreshScope注解使配置动态生效
spring:
  cloud:
    nacos:
      config:
        server-addr: ${NACOS_SERVER_ADDR:localhost:8848}
        namespace: ${NACOS_NAMESPACE:}
        group: DEFAULT_GROUP
        extension-configs:
          - data-id: spring-ai-config
            group: DEFAULT_GROUP
            refresh: true

7. 总结

本教程详细介绍了如何使用Spring AI框架集成OpenAI ChatGPT、Deepseek和阿里云通义千问三大语言模型。通过统一的接口抽象,开发者可以轻松切换不同的AI服务提供商,而无需大幅修改业务代码。

关键要点:

  1. 使用application.yml集中管理各模型配置,保持整洁和可维护性
  2. 利用Spring AI提供的统一API简化多模型集成
  3. 根据业务需求选择合适的模型
  4. 实施最佳实践确保安全性、可靠性和性能

随着AI技术的快速发展,Spring AI为Java开发者提供了一个强大而灵活的工具,帮助构建下一代智能应用程序。无论是内容创作、技术支持还是数据分析,合理利用这些大语言模型都能显著提升应用价值和用户体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pengles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值