题目大意:
给你三个数n,m,q
代表有n*m个矩阵
然后有q次操作
每次操作输入x,y坐标禁止一个格子通行
问你每次操作后矩阵里有多少个“楼梯"
(楼梯意思是末尾如果是横的那么它前面就要是竖着的,如果是竖的就要跟着横的,具体看题面)
思路:dp
首先将所有楼梯给它计算出来
设dp[i][j][[0/1]
dp[i][j][0]表示在第i行第j列以(i,j)为结尾的楼梯末尾是竖的方案数
dp[i][j][1]表示在第i行第j列以(i,j)为结尾的楼梯末尾是横的方案数
并且因为本身一个格子的时候也算是楼梯
那么dp[x][y][0],dp[x][y][1]都要记得加1把本身算进去
方程就出来啦
dp[i][j][0]=dp[i-1][j][1]+1
dp[i][j][1]=dp[i][j-1][0]+1
同时要注意一个格子是被计算了两次的(因为把横的时候和竖的时候都算进去了一次)
总答案要记得减去
之后还有修改询问直接修改即可
因为改了一个格子之后影响的只有它右边跟下边的格子
同时右边的格子和下边的格子只会影响它右下角的格子
在n,m相近情况下最多改3*n个格子
然后重新算这些格子对答案的贡献即可
AC代码:
#include <iostream>
using namespace std;
typedef long long ll;
const int N=1010;
int a[N][N];
ll dp[N][N][2];
ll ans=0;
int n,m,q;
void solve(int x,int y){
if(x>n||y>m)return;
ans-=dp[x][y][0]+dp[x][y][1];
if(a[x][y])dp[x][y][0]=dp[x][y][1]=0;//a[x][y]==1代表是被禁止的点
else dp[x][y][0]=dp[x-1][y][1]+1,dp[x][y][1]=dp[x][y-1][0]+1;
ans+=dp[x][y][0]+dp[x][y][1];
return;
}
int main()
{
cin>>n>>m>>q;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
solve(i,j);
}
}
int x,y;
ll cnt=n*m;//记录多少个未被禁止的单点
while(q--){
cin>>x>>y;
a[x][y]^=1;
if(a[x][y])cnt--;
else cnt++;
solve(x,y);
for(x++,y++;x<=n+1&&y<=m+1;x++,y++){
solve(x,y-1);
solve(x-1,y);
solve(x,y);
}
cout<<ans-cnt<<endl;
}
return 0;
}