PTA数据结构 6-12 二叉搜索树的操作集 (30 分)

这篇博客介绍了如何实现二叉搜索树的五个基本操作:插入、删除、查找最小值、查找最大值和查找指定元素。在插入时需要考虑分配内存,删除时需处理不同子节点情况,查找操作则通过递归完成。样例代码展示了这些操作的实现细节,并给出了测试用例的输入和输出。
摘要由CSDN通过智能技术生成

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

注意事项:

        插入的时候,在插入之前要先分配 内存!

        删除的时候要考虑是否是叶结点,若不是,须考虑会有几个子节点,若有两个,则需要找到右子树的最小值,让其来当该节点,同时删除该点在右子树的节点。若只有一个,则只需让其子节点代替该节点即可。

        查找只需调用递归函数即可。

        查找最大值和最小值时须注意,因为没有告诉最大值最小值具体是多大,所以只要找到最右边的值和最左边的值即可,所以只要循环找右边和左边节点没有下一个右边和左边节点就说明找到了最大值和最小值了。

BinTree Insert( BinTree BST, ElementType X ){
	if(BST==NULL){
		BST=malloc(sizeof(struct TNode));
		BST->Data=X;
		BST->Left=NULL;
		BST->Right=NULL;
	} 
	else{
		if(BST->Data>X){
			BST->Left=Insert(BST->Left,X);
		}
		else if(BST->Data<X){
			BST->Right=Insert(BST->Right,X);
		}
	}
	return BST;
} 
BinTree Delete( BinTree BST, ElementType X ){
	if(BST==NULL){
		printf("Not Found\n");
		//return BST;
	}
	else{
		Position temp;
		if(BST->Data==X){
			if(BST->Left!=NULL&&BST->Right!=NULL){
				temp=FindMin(BST->Right);
				BST->Data=temp->Data;
				BST->Right=Delete(BST->Right,temp->Data);
			} 
			else{
				temp=BST;
				if(BST->Left==NULL){
					BST=BST->Right;
				}
				else{
					BST=BST->Left;
				}
			}
			//free(BST);
			//return NULL;
		}
		else if(BST->Data>X){
			//if(BST->Left)
			BST->Left=Delete(BST->Left,X);
		}
		else if(BST->Data<X){
			//if(BST->Right)
			BST->Right=Delete(BST->Right,X);
		}
		return BST;
	}
	return BST;
} 
Position Find( BinTree BST, ElementType X ){
	if(BST==NULL){
		//printf("Not Found\n");
		return NULL;
	}
	else{
		if(BST->Data==X){
			//free(BST);
			return BST;
		}
		else if(BST->Data>X){
			//if(BST->Left)
			return Find(BST->Left,X);
		}
		else if(BST->Data<X){
			//if(BST->Right)
			return Find(BST->Right,X);
		}
	}
	//return BST;
} 
Position FindMin( BinTree BST )
{
	if(BST==NULL){
		return BST;
	}
	else{
		if(BST->Left)
		return FindMin(BST->Left);
		else return BST;
	}
//	if(BST){
//		if(BST->Left){
//			return FindMin(BST->Left);
//		}
//		else{
//			return BST;
//		}
//	}
} 
Position FindMax( BinTree BST ){
	if(BST==NULL){
		return BST;
	}
	else{
		if(BST->Right)
		return FindMax(BST->Right);
		else return BST;
	}
//	if(BST){
//		if(BST->Right){
//			return FindMax(BST->Right);
//		}
//		return BST;
//	}
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值