本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数
Insert
将X
插入二叉搜索树BST
并返回结果树的根结点指针; - 函数
Delete
将X
从二叉搜索树BST
中删除,并返回结果树的根结点指针;如果X
不在树中,则打印一行Not Found
并返回原树的根结点指针; - 函数
Find
在二叉搜索树BST
中找到X
,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin
返回二叉搜索树BST
中最小元结点的指针; - 函数
FindMax
返回二叉搜索树BST
中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
注意事项:
插入的时候,在插入之前要先分配 内存!
删除的时候要考虑是否是叶结点,若不是,须考虑会有几个子节点,若有两个,则需要找到右子树的最小值,让其来当该节点,同时删除该点在右子树的节点。若只有一个,则只需让其子节点代替该节点即可。
查找只需调用递归函数即可。
查找最大值和最小值时须注意,因为没有告诉最大值最小值具体是多大,所以只要找到最右边的值和最左边的值即可,所以只要循环找右边和左边节点没有下一个右边和左边节点就说明找到了最大值和最小值了。
BinTree Insert( BinTree BST, ElementType X ){
if(BST==NULL){
BST=malloc(sizeof(struct TNode));
BST->Data=X;
BST->Left=NULL;
BST->Right=NULL;
}
else{
if(BST->Data>X){
BST->Left=Insert(BST->Left,X);
}
else if(BST->Data<X){
BST->Right=Insert(BST->Right,X);
}
}
return BST;
}
BinTree Delete( BinTree BST, ElementType X ){
if(BST==NULL){
printf("Not Found\n");
//return BST;
}
else{
Position temp;
if(BST->Data==X){
if(BST->Left!=NULL&&BST->Right!=NULL){
temp=FindMin(BST->Right);
BST->Data=temp->Data;
BST->Right=Delete(BST->Right,temp->Data);
}
else{
temp=BST;
if(BST->Left==NULL){
BST=BST->Right;
}
else{
BST=BST->Left;
}
}
//free(BST);
//return NULL;
}
else if(BST->Data>X){
//if(BST->Left)
BST->Left=Delete(BST->Left,X);
}
else if(BST->Data<X){
//if(BST->Right)
BST->Right=Delete(BST->Right,X);
}
return BST;
}
return BST;
}
Position Find( BinTree BST, ElementType X ){
if(BST==NULL){
//printf("Not Found\n");
return NULL;
}
else{
if(BST->Data==X){
//free(BST);
return BST;
}
else if(BST->Data>X){
//if(BST->Left)
return Find(BST->Left,X);
}
else if(BST->Data<X){
//if(BST->Right)
return Find(BST->Right,X);
}
}
//return BST;
}
Position FindMin( BinTree BST )
{
if(BST==NULL){
return BST;
}
else{
if(BST->Left)
return FindMin(BST->Left);
else return BST;
}
// if(BST){
// if(BST->Left){
// return FindMin(BST->Left);
// }
// else{
// return BST;
// }
// }
}
Position FindMax( BinTree BST ){
if(BST==NULL){
return BST;
}
else{
if(BST->Right)
return FindMax(BST->Right);
else return BST;
}
// if(BST){
// if(BST->Right){
// return FindMax(BST->Right);
// }
// return BST;
// }
}