Basic Idea of GAN
Generation(生成数据)
深度学习中的神经网络需要大量的数据进行学习、训练,才可以使模型效果较好。当某些领域的数据集不足时,可以采用GAN来生成数据。
用什么生成想要的数据?
输入随机噪声,一组向量,满足某种分布。
每一个dimension对应想要生成数据的某个特征。
判别器
输入为所想要的数据类型(有原始的、生成的),判别器会判别此数据为真的概率。概率越大,生成器生成的数据越真实。
生成器欺骗判决器,判决器要努力分辨生成器生成的图片,会相互博弈。
双方不断学习,对抗。
论文(做假钞,警察的例子)。
网络模型,目标是让输出的概率尽可能大。
Auto-encoder
为什么随机噪声可以生成想要的数据呢?
generation所要干的就是Decoder的工作。
????
论文:Generative Adversarial Nets
introduction
反向传播:训练网络
dropout算法:防止神经网络过拟合的正则化技术。通过在训练过程中随机“丢弃”!!!(设置为0)