GAN数据增强

Basic Idea of GAN

Generation(生成数据)

        深度学习中的神经网络需要大量的数据进行学习、训练,才可以使模型效果较好。当某些领域的数据集不足时,可以采用GAN来生成数据。

 用什么生成想要的数据?

        输入随机噪声,一组向量,满足某种分布。

        每一个dimension对应想要生成数据的某个特征。

判别器 

        输入为所想要的数据类型(有原始的、生成的),判别器会判别此数据为真的概率。概率越大,生成器生成的数据越真实。

        生成器欺骗判决器,判决器要努力分辨生成器生成的图片,会相互博弈。

         双方不断学习,对抗。

        论文(做假钞,警察的例子)。

         网络模型,目标是让输出的概率尽可能大。

 Auto-encoder

        为什么随机噪声可以生成想要的数据呢?

        generation所要干的就是Decoder的工作。

 ????

 论文:Generative Adversarial Nets

introduction

        反向传播:训练网络

        dropout算法:防止神经网络过拟合的正则化技术。通过在训练过程中随机“丢弃”!!!(设置为0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值