题意:
数字线上有N个城市。第i个城市位于坐标x处,目标是至少访问所有这些城市一次。
您将首先设置一个正整数D。
您将离开坐标X,并执行下面的移动1和移动2,任意次数:
移动1:从坐标y移动到坐标y+D。
移动2:从坐标y移动到坐标y−D
找出D的最大值,使您能够访问所有城市。
分析:
可以发现想要走到每个点,两个相邻的点的距离必定是D的整数倍。
所以只需要处理出序列的距离,并求出整个数列的最大公约数。
注意一开始的位置也要加入序列中。
#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<double, double> PDD;
const double PI = acos(-1.0);
const int N = 1e5 + 10,M = N * 2,INF = 0x3f3f3f3f;
const LL mod = 1e9 + 7;
int h[N],e[2 * N],ne[2 * N],idx;
int dx[4] = {-1,0,1,0},dy[4] = {0,-1,0,1};
//int dx[8] = {-1,-1,-1,0,0,1,1,1},dy[8] = {1,0,-1,-1,1,1,0,-1};
priority_queue<int> q;
//priority_queue<int, vector<int>, greater<int>> q;
map<int,int> ma;
int qmi(int a,int b,int p)
{
int ans = 1;
while(b)
{
if(b & 1) ans = (LL)ans * a % p;
b >>= 1;
a = (LL) a * a % p;
}
return ans;
}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int T;
int n,m;
LL a[N],b[N];
bool st[N];
int main(){
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;i ++){
scanf("%lld",&a[i]);
}
a[n + 1] = m;
sort(a + 1,a + 1 + n + 1);
for(int i = 1;i < n + 1;i ++){
b[i] = a[i + 1] - a[i];
}
LL t = b[1];
for(int i = 2;i <= n;i ++){
t = gcd(t,b[i]);
}
cout<<t<<endl;
return 0;
}