ChatGPT新一代人工智能

ChatGPT新一代人工智能

介绍ChatGPT

ChatGPT是由OpenAI开发的一种大型语言模型,它能够通过对语言的自然处理来回答问题、产生文本和执行其他的任务。

ChatGPT是基于GPT-3(Generative Pre-training Transformer 3)模型构建的,GPT-3是目前为止最大的自然语言处理模型。它使用了大量的训练数据和多层的神经网络架构,能够对自然语言进行高精度的处理。

ChatGPT可以进行自然语言对话,回答用户的问题,并能够产生自然语言文本。它可以用于各种应用场景,比如聊天机器人、客服系统、自然语言处理等。

在使用ChatGPT时,用户可以通过简单的API调用来使用它的功能。用户可以输入一个自然语言的问题或话语,ChatGPT会返回一个自然语言的答案或文本。用户还可以通过设置参数来调整ChatGPT的行为。

总的来说,ChatGPT是一种非常强大的自然语言处理工具,能够为用户提供高质量的自然语言对话和文本产生服务。它在当前的互联网行业中有广泛的应用前景,是一种值得关注的技术。

ChatGPT的功能

  1. 文本生成:可以根据输入的上下文和提示信息,生成自然语言文本。
  2. 自动回复:可以根据输入的文本,生成相应的回复内容。
  3. 信息摘要:可以根据输入的文本,生成相应的摘要信息。
  4. 对话生成:可以根据输入的对话上下文,生成相应的对话内容。

ChatGPT是一种基于Transformer架构的语言模型,具有很高的自然语言理解能力。它可以在文本生成、自动回复、信息摘要和对话生成等应用中发挥作用。

ChatGPT编写代码

import torch
from transformers import ChatGPT2Tokenizer, ChatGPT2Model

# 初始化模型和分词器
model = ChatGPT2Model.from_pretrained('chatgpt2')
tokenizer = ChatGPT2Tokenizer.from_pretrained('chatgpt2')

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 准备输入
prompt = "The weather is nice today. Do you want to go for a walk?"
input_ids = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0).to(device)

# 生成文本
with torch.no_grad():
    output = model.generate(input_ids)

# 将输出转换为人类可读的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(generated_text)

上面的代码使用了ChatGPT2模型和ChatGPT2分词器,并将模型加载到了GPU上。然后,通过输入一段文本提示,调用模型的生成

看到这聪明的你应该已经发现了,这篇文章就是由chatAI自己生成的。

下面是生成这篇文章的过程

请添加图片描述
请添加图片描述

请添加图片描述

​ 怎么样,感受到人工智能的神奇了吗?其实这还只是冰山一角,它能根据你给的描述说出来你想要的任何东西,不同于手机的小爱、Siri,它更加智能,也不同于浏览器的搜索功能,它有自己的思考,而且给出的都是有用的。如果你有什么需求,比如要写一篇文章,作业或者写让它帮你写代码,任务计划等等这些东西,都可以和它进行描述,而当我对回复的结果不满意时,可以进行更精准的描述来引导AI。比如加上条件,多少字以内等等

还有他的代码功能绝对是最厉害的部分,比如实现水仙花数功能
请添加图片描述

​ 总之人工智能的发展是非常迅速的,人工智能的确也取代了人类的好多事情,一步步改变着人类世界,但它仍然有自身的局限性。比如只能复读整合观点,没法提出新的见解;只能实现已有需求,没法实现未曾实现过的需求。

ChatGPT官网: https://openai.com/blog/chatgpt/ 但是这个是国外的网站,进去注册的时候会发现国内的账号是禁止使用的,这时候可能就需要大家搭梯子去访问了

ChetGPT4是一个基于GPT-4模型的自然语言处理模型,可以用于文本生成、对话生成、情感分析等应用。以下是使用ChetGPT4的步骤: 1. 安装Python和PyTorch 在使用ChetGPT4之前,需要安装Python和PyTorch。具体安装方法可以参考官方文档。 2. 下载ChetGPT4代码 可以从GitHub上下载ChetGPT4的代码,将其解压缩到本地目录。 3. 下载预训练模型 ChetGPT4的预训练模型可以从官方网站上下载。下载完成后,将模型文件复制到代码目录下的“models”文件夹中。 4. 使用ChetGPT4生成文本 ChetGPT4的主要功能是生成文本。可以使用以下代码来生成文本: ``` import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('chetgpt4') model = GPT2LMHeadModel.from_pretrained('chetgpt4') input_text = "我想知道" input_ids = tokenizer.encode(input_text, return_tensors='pt') output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` 在上述代码中,首先导入必要的库(包括PyTorch和transformers库),然后加载ChetGPT4的预训练模型和分词器。接着,定义输入文本,将其编码为输入ID,并使用模型生成输出文本。最后,将生成的文本解码并打印到控制台上。 5. 其他应用 除了文本生成,ChetGPT4还可以用于对话生成、情感分析等应用。具体使用方法可以参考官方文档和示例代码
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值