剑指 Offer 10- I. 斐波那契数列

LeetCode - 剑指 Offer 10- I. 斐波那契数列


题目描述

难度:简单

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1

示例 2:

输入:n = 5
输出:5

提示:

0 <= n <= 100

分析

斐波那契数列是很经典的算法了,大致思想就是从索引为 2 的数开始,当前数的值都是前两个数之和,只要按照这个逻辑不跑偏,其实还是很好写的;

我们可以维护 3 个变量,分别用来保存计算过程需要用到的值,然后按照当前数值等于前两个数相加的思想来进行循环,循环结束就返回保存当前值的变量就可以了;

由于答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1,我们可以在循环的过程中对当前值进行取模操作,把较大的值重新变小;(直接对结果取模是不可行的,由于题目给定的条件 0 <= n <= 100 ,所有一旦 n 较大的话,值会溢出)

由于斐波那契数列开头两个值是确定的,所以我们在进行循环的时候可以不考虑他们的那份;

代码:

public int fib(int n) {
        if(n < 2){ // 前两个值的话由于确定 可以直接返回
            return n == 0 ? 0 : 1;
        }
        // first 是前一个值,sec 是当前值,temp 用来进行值替换时的过渡
        int first = 0, sec = 1,temp = 0; 
        
        while (n > 1){ // 由于前两个值确定,所以 n 从 2 开始计算
			
            temp = sec;
            sec = (first + sec) % 1000000007;
            first = temp;

            --n;
        }

        return sec;
    }

还有一种经典的解法就是递归,这个递归比较简单,但是一旦 n 的值稍微大一点比如超过了 50 - 60 的时候,效率就开始断崖式下降,变的很慢,不推荐使用。

代码:

public int fib(int n) {
        if(n == 0){
            return 0;
        }else if(n == 1){
            return 1;
        }
        return fib(n-1) + fib(n-2); // 当前值等于前两个值相加
    }

总结

两种解决方式,第一种就是解析斐波那契数列,然会把它的规则写出来就好了,第二种利用递归返回前两个数之和,结束条件就是递归到了数列头部那两个确定的元素了,就返回;



岁月悠悠,衰微只及肌肤;热忱抛却,颓废必致灵魂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值