题目描述
难度:简单
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
示例 2:
输入:n = 5
输出:5
提示:
0 <= n <= 100
分析
斐波那契数列是很经典的算法了,大致思想就是从索引为 2 的数开始,当前数的值都是前两个数之和,只要按照这个逻辑不跑偏,其实还是很好写的;
我们可以维护 3 个变量,分别用来保存计算过程需要用到的值,然后按照当前数值等于前两个数相加的思想来进行循环,循环结束就返回保存当前值的变量就可以了;
由于答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1,我们可以在循环的过程中对当前值进行取模操作,把较大的值重新变小;(直接对结果取模是不可行的,由于题目给定的条件 0 <= n <= 100 ,所有一旦 n 较大的话,值会溢出)
由于斐波那契数列开头两个值是确定的,所以我们在进行循环的时候可以不考虑他们的那份;
代码:
public int fib(int n) {
if(n < 2){ // 前两个值的话由于确定 可以直接返回
return n == 0 ? 0 : 1;
}
// first 是前一个值,sec 是当前值,temp 用来进行值替换时的过渡
int first = 0, sec = 1,temp = 0;
while (n > 1){ // 由于前两个值确定,所以 n 从 2 开始计算
temp = sec;
sec = (first + sec) % 1000000007;
first = temp;
--n;
}
return sec;
}
还有一种经典的解法就是递归,这个递归比较简单,但是一旦 n 的值稍微大一点比如超过了 50 - 60 的时候,效率就开始断崖式下降,变的很慢,不推荐使用。
代码:
public int fib(int n) {
if(n == 0){
return 0;
}else if(n == 1){
return 1;
}
return fib(n-1) + fib(n-2); // 当前值等于前两个值相加
}
总结
两种解决方式,第一种就是解析斐波那契数列,然会把它的规则写出来就好了,第二种利用递归返回前两个数之和,结束条件就是递归到了数列头部那两个确定的元素了,就返回;
岁月悠悠,衰微只及肌肤;热忱抛却,颓废必致灵魂