题目描述
给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
提示:
1 <= nums.length <= 3 * 10^4
0 <= nums[i] <= 10^5
解题分析
看示例2的解释,会发现当在一个区间内 无论如何跳跃都无法超出该区间末尾,那么结果就一定是false。
我们可以利用贪心的思想,取一个区域中的可以跳跃的最远距离,然后向着该距离遍历元素,并尝试着更新能跳跃到的最远距离,如果遍历到最远距离时未到达末尾下标,那么证明这个最远距离即为一个区间末尾,无法超出,即可返回false;
code
public boolean canJump(int[] nums) {
int maxLength = nums[0]; // 最远能到达的距离
for(int i = 0 ; i <= maxLength ; i++){
if(maxLength > nums.length - 2) return true; // 能到尾部 则返回true
maxLength = Math.max(nums[i] + i,maxLength); // 到达不了尾部 再尝试去更新能到达的最远距离
}
return false; // 出了循环,即到达了区间末尾 直接返回false
}
总结
这一题最开始利用动态规划写的,发现效率不高,就翻阅了一下官方题解,发现可以用贪心思想来做,结果瞎猫碰上死耗子,做出来了。。。再接再厉!
岁月悠悠,衰微只及肌肤;热忱抛却,颓废必致灵魂