数模笔记(一):线性规划、整数规划及非线性规划1.0

数模笔记目录

数模笔记(一):线性规划、整数规划及非线性规划

数模笔记(二):层次分析法

数模笔记(三):灰色系统分析方法

数模笔记(四):插值与拟合

数模笔记(五):变异系数法

数模笔记(六):两变量相关性分析与主成分分析

数模笔记(七):图论

🪐🌏🌌正文开始🤖🐧🦄

一、线性规划(Linear Programming)

 二、整数规划模型(Integer Programming)

(一)类型

        1.纯整数规划:所有决策变量要求取非负整数(这时引进的松弛变量和剩余变量可以不要求取整数)。

        2.全整数规划:除了所有决策变量要求取非负整数外, 系数aij和常数bi也要求取整数(这时引进的松弛变量和剩余变量也必须是整数)。

        3.混合整数规划:只有一部分的决策变量要求取非负整数,另一部分可以取非负实数。

        4.0-1整数规划:所有决策变量只能取 0 或 1 两个整数。

(二)解法

          1.首先不考虑整数约束,得到线性规划问题(一般称为松弛问题或伴随问题)

          2.分枝定界法

 

        3.割平面法

        (1)如果松弛问题(P0)无解,则(P)无解;

        (2)如果(P0)的最优解为整数向量,则也是(P)的最优解;

        (3)如果(P0)的解含有非整数分量,则对(P0) 增加割平面条件:即对(P0)增加一个线性约束,将(P0)的可行区域割掉一块,使得非整数解恰好在割掉的一块中, 但又没有割掉原问题(P)的可行解,得到问题(P1),重复上述的过程。

        (4)割平面法基本步骤

                ①求解线性规划最优解

                ②𝑥𝑘为松弛变量,将松弛变量的系数𝑎𝑖𝑘以及资源限制𝑏𝑖𝑘分为整数部分与小数部分

                

                

                 

                ③ 

                

        4.匈牙利算法

        第一步:变换指派问题的系数(也称效率)矩阵(cij) 为(bij),使在(bij) 的各行各列中都出现0元素,即

                (1) 从 (cij) 的每行元素都减去该行的最小元素;

                (2) 再从所得新系数矩阵的每列元素中减去该列的最小元素。

        第二步:进行试指派,以寻求最优解。

                在(bij)中找尽可能多的独立0元素,若能找出n个独立0元素,就以这n 个独立0元素对应解矩阵(xij)中的元素为1,其余为0,这就得到最优解。找独立0元素,常用的步骤为:

                (1)从只有一个0元素的行(列)开始,给这个0元素加圈,记作◎ 。然后划去◎ 所在列(行)的其它0元素,记作Ø ;这表示这列所代表的任务已指派 完,不必再考虑别人了。

                (2)给只有一个0元素的列(行)中的0元素记作◎;然后划去◎所在行的0元素,记作Ø。

                (3)反复进行(1),(2)两步,直到尽可能多的0元素都被圈出和划掉为止。

                (4)若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,则从剩有0元素最少的行(列)开始,比较这行各0元素所在列中0元素的数目,选择0元素少的那列的这个0元素加圈(表示选择性多的要“礼让”选择性少的)。然后划掉同行同列的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为止。

                (5)若◎ 元素的数目m 等于矩阵的阶数n,那么这指派问题的最优解已得到。若m < n, 则转入下一步。

        第三步:作最少的直线覆盖所有0元素。

                (1)对没有◎的行打√号;

                (2)对已打√号的行中所有含Ø元素的列打√号;

                (3)再对打有√号的列中含◎ 元素的行打√号;

                (4)重复(2),(3)直到得不出新的打√号的行、列为止;

                (5)对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖所有0元素的最少直线数 l 。l 应等于m,若不相等,说明试指派过程有误,回到第二步(4),另行试指派;若 l=m < n,须再变换当前的系数矩阵,以找到n个独立的0元素,为此转第四步。

        第四步:变换矩阵(bij)以增加0元素。

                在没有被直线覆盖的所有元素中找出最小元素,然后打√各行都减去这最小元素;打√各列都加上这最小元素(以保证系数矩阵中不出现负元素)。新系数矩阵的最优解和原问题仍相同。转回第二步。

 三、非线性规划

        1.一般形式

        在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。

2.Matlab中非线性规划的数学模型

        其中f(x)是标量函数,A,b,Aeq,beq,lb,ub是相应维数的矩阵和向量,c(x),ceq(x)是非线性向量函数。

        在Matlab中的命令是[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

        x的返回值是决策向量x的取值,fval返回的是目标函数的取值,其中fun是用M文件定义的函数 ;x0是x的初始值;A,b,Aeq,beq定义了线性约束如果没有线性约束,则A=[],b=[],Aeq=[],beq=[];lb和ub是变量x的下界和上界,如果上界和下界没有约束,即x无下界也无上界,则lb=[],ub=[],也可以写成 lb的各分量都为-inf,ub的各分量都为inf;nonlcon是用M文件定义的非线性向量函数c(x),ceq(x);options定义了优化参数,可以使用Matlab缺省的参数设置。

3.二次规划

        若某非线性规划的目标函数为自变量 的二次函数,约束条件又全是线性的,就称这种规划为二次规划。Matlab中二次规划的数学数学模型可表述如下

        这里H是实对称矩阵,f,b,beq,lb,ub是列向量,A,Aeq是相应维数的矩阵。Matlab中求解二次规划的命令是:[x,fval] = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)。返回值x是决策向量x的值,返回值fval是目标函数在x 处的值

  • 4
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liutangplease

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值