CPO-LSSVM-ABKDE区间预测,基于24年新算法冠豪猪优化算法优化最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归区间预测(点预测+概率预测+核密度估计)
87-TOC-LSSVM-ABKDE(25年算法,两者可自行选)
Matlab语言程序已调试好,无需更改代码直接替换Excel运行!
冠豪猪优化器(Crested Porcupine Optimizer,CPO)于2024年发表在中科院1区SCI期刊Knowledge-Based Systems上!
自适应带宽核函数密度估计允许在每个数据点周围使用不同的核函数带宽,自适应带宽能够更好地匹配局部密度变化,因此它通常能够减少估计误差,特别是在数据密度变化较大的区域。相比于固定带宽的核密度估计,自适应带宽能够更准确地捕获数据分布的细节。