redis
概览
-
是一个单进程单线程模型的基于内存的高性能的key-value内存型数据库
-
支持数据的持久化,提供string,list,set,zset(sortedset),hash等数据结构的存储,支持主从备份,3.x后分布式布署操作原子性,丰富的实用特性,如订阅-发布模式(可替换Kafka),生产者消费者模式,key过期等常用易用的模式
-
主要场景是加速客户端访问速度或其它要加速提效的功能点,做一些缓存或限时任务等
-
java操作redis,加入jedis依赖
-
测试流程
-
链接上redis,new一个jedis对象,传ip和端口号,再.auth传入密码
-
相关操作,添加数据,操作数据
-
关闭链接.close
-
封装成工具类
-
构造方法里传入ip,端口号,和密码生成一个jedis对象
-
封装常用的set,get方法,方便调用
-
类里声明一个私有的jedis对象,因为他有很多种方法,封装不过来的,想用的话就用对象来.方法
-
一 介绍
是一个高性能的key-value内存型数据库,Redis 是完全开源免费的,遵守BSD协议
架构
-
单进程单线程模型的KV数据库
-
多线程可能用到锁
-
多线程处理会涉及线程切换消耗CPU
-
redis可以通过在单机开多个Redis实例来完善发挥多核CPU性能
-
-
完全基于内存,但提供数据持久化功能
-
数据结构简单,对数据操作也简单
-
使用多路 I/O 复用模型(网络io事件模型-epoll)
-
网络IO都是通过Socket实现,Server在某一个端口持续监听,客户端通过Socket(IP+Port)与服务器建立连接(ServerSocket.accept),成功建立连接之后,就可以使用Socket中封装的InputStream和OutputStream进行IO交互。针对每个客户端,Server都会创建一个新线程专门用于处理该客户端的IO请求
-
默认情况下,网络IO是阻塞模式,即服务器线程在数据到来之前处于【阻塞】状态,等到数据到达,会自动唤醒服务器线程,着手进行处理。阻塞模式下,一个线程只能处理一个流的IO事件
-
5种网络IO模式
-
阻塞IO、非阻塞IO、IO复用模型、信号驱动IO、异步IO模型
-
IO复用模型中包括:select模式、poll模式、epoll模式(event poll模式),其中epoll是select和poll模型的升级优化,使得一个线程可以最大限度、最高效的监听和响应更多路客户端的IO请求
-
-
二 特点
-
支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候自动再次加载进行使用。
-
既支持key-value类型的数据操作(string),还提供list,set,zset,hash等数据结构的存储。
-
支持数据的主从备份,采用master-slave模式的主从备份。
-
新版3.x也支持分布式布署模式,真正实现了数据块的分布式存储与响应。
-
性能极高–Redis读的速度是11万次/s,写的速度是8万次/s。
-
所有操作均为原子性操作
-
丰富的实用特性,如订阅-发布模式,生产者消费者模式,key过期等常用易用的模式。
-
三种运行模式
-
单机布署
-
主备布署
-
分布式布署
-
相关竞品组件
-
MemoryCache-kv型缓存数据库 :单进程多线程模型
-
Apache Ignite-分布式关系型缓存数据库
三 应用场景
目标:加速客户端访问速度或其它要加速提效的功能点
-
缓存一些静态数据
-
缓存一些不经常变化数据
-
缓存一些高耗时计算的数据
-
缓存一些预计算的数据
-
充当中间件,做系统模块或子系统之间的解耦使用
-
Springboot集成echarts词云图项目之前端加速
词云列表在web端展示时候,将一直从数据库查询操作,改到第一次从数据库查询,后续查redis的操作,体验速度的提升情况
-
舆情热点挖掘大项目之前端加速
热点挖掘在web端展示时候,将一直从数据库查询操作,改到第一次从数据库查询,后续查redis的操作,体验速度的提升情况
-
高级爬虫之redis中间件存储与系统解耦应用
用redis作为爬虫的已采集任务对象集合的第三方存储,省去从数据库恢复已采集任务对象集合。
用redis将分布式采集器中的主和从节点的交互解耦,不再需要直通信
具体使用
-
缓存热数据,可以设置过期时间然后再进行缓存更新操作
-
限时业务的运用,可以使用expire命令设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景
-
redis由于incrby命令可以实现原子性的递增,所以可以运用于高并发的秒杀活动、分布式序列号的生成、具体业务还体现在比如限制一个手机号发多少条短信、一个接口一分钟限制多少请求、一个接口一天限制调用多少次等等
-
排行榜问题,关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序
-
分布式锁
-
延时操作
-
分页,模糊搜索
-
点赞、好友等相互关系的存储
四 具体使用
windows中
-
开启服务
-
cmd进入对应目录后redis-server.exe --maxheap 268435456
-
通过配置文件启动:修改redis.windows.conf中的maxheap参数值为26843545,cmd进入对应目录后redis-server.exe redis.windows.conf
-
-
客户端连接服务器
-
运行redis-cli.exe,set k1 v1 添加kv数据,keys *查看所有v,get k1 查看v1
-
可以指定自定义ip和端口,cmd进入目录,redis-cli.exe -h 127.0.0.1 -p 6379
-
linux中
-
资源入口链接-Index of /releases/
-
通过浏览器直接打开,或者wget均可
-
解压为源码包,需要编译后方可使用
tar -xzvf redis-2.8.24.tar.gz cd redis-2.8.24 make 源代码编译 cd src 进入编译完成后的执行文件所在的主目录 ./redis-server 按默认参数起动redis-server ,或者./redis-server ../redis.conf //按指定的参数文件来起动redis-server,参数文件配置等同windows的conf文件
-
客户端连接服务端
cd src ./redis-cli 或者 ./redis-cli -h 127.0.0.1 -p 6379
五 常用命令
1 设置密码
在redis.conf中,修改requirepass参数 ,参数后面为密码,重启生效,进入: ./redis-cli -a xxxx,先进入./redis-cli再验证auth xxxx
2 key常用命令
序号 | 命令 | 作用 |
---|---|---|
1 | set key value | 设置kv对 |
2 | get key | 通过给定key获取其对应的value |
3 | del key | 删除指定的key |
4 | dump key | 返回key对应的序列化后的值 |
5 | exists key | 检查给定 key 是否存在 |
6 | expire key seconds | 给指定key设置失效时间 |
7 | expireat key timestamp | EXPIREAT 的作用和 EXPIRE 类似,都用于为 key 设置过期时间。 不同在于 EXPIREAT 命令接受的时间参数是 UNIX 时间戳(unix timestamp) |
8 | pexpire key milliseconds | 设置 key 的过期时间以毫秒计 |
9 | pexpireat key milliseconds-timestamp | 设置 key 过期时间的时间戳(unix timestamp) 以毫秒计 |
10 | keys pattern | 查找所有符合给定模式( pattern)的 key |
11 | persist key | 移除 key 的过期时间,key 将持久保持 |
12 | ttl key | 以秒为单位,返回给定 key 的剩余生存时间(TTL, time to live) |
13 | randomkey | 从当前数据库中随机返回一个 key |
14 | rename key newkey | 修改 key 的名称 |
15 | renamenx key newkey | 仅当newkey不存在时,将key改名为newkey |
16 | type key | 返回key所储存的值的类型 |
3 hash结构操作常用命令
类似java中的map结构,内部由为该map对象设置一个名称字段,其内部由一系列的kv对组成。
序号 | 命令 | 作用 |
---|---|---|
1 | hset key field value | 将哈希表 key 中的字段 field 的值设为 value |
2 | hsetnx key field value | 只有在字段 field 不存在时,设置哈希表字段的值 |
3 | hvals key | 获取哈希表中所有值 |
4 | hdel key field1 [field2] | 删除一个或多个哈希表字段 |
5 | hexists key field | 查看哈希表 key 中,指定的字段是否存在 |
6 | hget key field | 获取存储在哈希表中指定字段的值 |
7 | hgetall key | 获取在哈希表中指定 key 的所有字段和值 |
8 | hkeys key | 获取所有哈希表中的字段 |
9 | hlen key | 获取哈希表中字段的数量 |
10 | hmget key field1 [field2] | 获取所有给定字段的值 |
11 | hmset key field1 value1 [field2 value2 ] | 同时将多个field-value (域-值)对设置到哈希表key 中 |
4 列表(List)结构操作常用命令
序号 | 命令 | 作用 |
---|---|---|
1 | lpush key value1 [value2] | 将一个或多个值插入到列表头部 |
2 | lpushx key value | 将一个值插入到已存在的列表头部 |
3 | lrange key start stop | 获取列表指定范围内的元素,用元素所在的下标值来作为范转围的上下限,如 lrange list1 0 10 |
4 | rpop key | 移除并获取列表最后一个元素 |
5 | rpush key value1 [value2] | 在列表中添加一个或多个值 |
6 | rpushx key value | 为已存在的列表添加值 |
7 | llen key | 获取列表长度 |
8 | lpop key | 移除并获取列表的第一个元素 |
9 | blpop key1 [key2 ] timeout | 移出并获取列表的第一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止。 |
10 | brpop key1 [key2 ] timeout | 移出并获取列表的最后一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止。 |
5 集合Set结构操作常用命令
-
类比于JavaSe中的HashSet,但Redis中的Set结构主要存储是String类型的无序集合。
-
集合是通过哈希表实现的,所以添加,删除,查找的时间复杂度都是 O(1)。
-
集合成员是唯一、不重复的数据结构。
序号 | 命令 | 作用 |
---|---|---|
1 | sadd key member1 [member2] | 向集合添加一个或多个成员 |
2 | srem key member1 [member2] | 移除集合中一个或多个成员 |
3 | sismember key member | 判断 member 元素是否是集合 key 的成员 |
4 | smembers key | 返回集合中的所有成员 |
5 | smove source destination member | 将member元素从source集合移动到destination 集合 |
6 | spop key | 移除并返回集合中的一个随机元素 |
7 | sunion key1 [key2] | 返回所有给定集合的并集 |
8 | sunionstore destination key1 [key2] | 所有给定集合的并集存储在 destination 集合中 |
9 | sinter key1 [key2] | 返回给定所有集合的交集 |
10 | scard key | 获取集合的成员数 |
11 | sdiff key1 [key2] | 返回给定所有集合的差集 |
12 | sdiffstore destination key1 [key2] | 返回给定所有集合的差集并存储在 destination 中 |
13 | sinterstore destination key1 [key2] | 返回给定所有集合的交集并存储在 destination 中 |
6 redis连接服务器操作
序号 | 命令 | 作用 |
---|---|---|
1 | auth password | 验证密码是否正确 |
2 | echo message | 打印字符串 |
3 | ping | 查看服务是否运行,返回pong代表正常 |
4 | quit | 关闭当前连接 |
5 | select index | 切换到指定的数据库,默认redis有16个数据库,默认选择索引号为0的数据库 |
7 redis服务器操作
序号 | 命令 | 作用 |
---|---|---|
1 | bgrewriteaof | 异步执行一个 aof(appendonly file) 文件重写操作 |
2 | bgsave | 在后台异步保存当前数据库的数据到磁盘 |
3 | client list | 获取连接到服务器的客户端连接列表 |
4 | config set parameter value | 修改 redis 配置参数,无需重启 |
5 | dbsize | 返回当前数据库的 key 的数量 |
6 | flushall | 删除所有数据库的所有key |
7 | flushdb | 删除当前数据库的所有key |
8 | lastsave | 返回最近一次 redis 成功将数据保存到磁盘上的时间,以 unix 时间戳格式表示 |
9 | monitor | 实时打印出 redis 服务器接收到的命令,调试用 |
10 | save | 同步保存数据到硬盘 |
11 | shutdown nosave | 异步保存数据到硬盘,并关闭服务器 |
12 | slaveof host port | 将当前服务器转变为指定服务器的从属服务器(slave server) |
8 基数统计结构HyperLogLog(基数即为去重)
-
HyperLogLog结构,是用来做基数统计的结构,与之对应的算法为HyperLogLog算法,是概率计算基数的一种算法。
-
在不要求绝对准确的场景下,比如1%标准误差的范围内,可以用该结构。
-
其显著优点是,输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、且很小的。
-
每个 HyperLogLog 键只需要 12 KB 内存,即可计算近 2^64 个不同元素的基数。其所占存储空间并不是线性增长的。
-
只计算基数,并不存储数据本身,故不能返回元素本身
序号 | 命令 | 作用 |
---|---|---|
1 | pfadd key element [element ...] | 添加指定元素到 HyperLogLog 中 |
2 | pfcount key [key ...] | 返回给定 HyperLogLog 的基数估算值 |
3 | pfmerge destkey sourcekey [sourcekey ...] | 将多个 HyperLogLog 合并为一个 HyperLogLog |
六 Java操作redis
-
引入依赖
-
java操作redis的第三方库为jedis
<project
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.tl.job002</groupId>
<artifactId>RedisTest</artifactId>
<version>0.0.1-SNAPSHOT</version>
<!-- 首先配置仓库的服务器位置,首选阿里云,也可以配置镜像方式,效果雷同 -->
<repositories>
<repository>
<id>nexus-aliyun</id>
<name>Nexus aliyun</name>
<url>http://maven.aliyun.com/nexus/content/groups/public</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.8.2</version>
</dependency>
</dependencies>
<build>
<finalName>RedisTest</finalName>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.7</source>
<target>1.7</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
</plugins>
</build>
</project>
-
测试redis server是否正常开启
import redis.clients.jedis.Jedis;
public class RedisUtil {
public static void main(String[] args) {
// 连接本地的 Redis 服务
Jedis jedis = new Jedis("localhost", 6379);
// 查看服务是否运行
System.out.println("服务正在运行: " + jedis.ping());
}
}
-
测试向redis加入kv对及查询
import redis.clients.jedis.Jedis;
public class RedisUtil {
public static void main(String[] args) {
// 连接本地的 Redis 服务
Jedis jedis = new Jedis("localhost", 6379);
jedis.set("jedis_k1", "jedis_v1");
System.out.println("jedis_k1=:"+ jedis.get("jedis_k1"));
}
}
-
从redis client黑窗口中查询结果
输入 get jedis_k1会返回jedis_v1说明起作用
redis操作工具化
import redis.clients.jedis.Jedis;
public class RedisUtil {
private Jedis jedis;
public Jedis getJedis() {
return jedis;
}
public void setJedis(Jedis jedis) {
this.jedis = jedis;
}
public RedisUtil(String host, int port, String password) {
jedis = new Jedis(host, port);
jedis.auth(password);
}
public void set(String key, String value) {
jedis.set(key, value);
}
public String getString(String key) {
return jedis.get(key);
}
public void close() {
this.jedis.close();
}
public static void main(String[] args) {
// 连接本地的 Redis 服务
RedisUtil redisUtil = new RedisUtil("localhost", 6379, "tianliangedu");
redisUtil.set("jedis_k1", "jedis_v1");
System.out.println("jedis_k1=:" + redisUtil.getString("jedis_k1"));
}
}