记录一次RSA

题目如下:

在一次RSA密钥对生成中,假设p=473398607161,q=4511491,e=17,求解出d

import gmpy2
p = 473398607161
q = 4511491
e = 17
phi = (p-1)*(q-1)       #φ(n)在写的时候多用phi代替,因为键盘不好敲出来。
d = gmpy2.invert(e,phi) #e模phi的逆为d, (e*d)%phi==1 原理上面讲过
print (d)

在RSA算法中,通信要进行加密和解密,具体过程如下:

  1. 找出两个质数p、q,计算得到N = p × q,N一般是1024位的二进制数
  2. 计算欧拉函数φ(N) = (p-1)(q-1)
  3. 找到一个公钥e,满足1 < e < φ(N),且有e和φ(N)互质
  4. 根据公钥去寻找私钥d,满足e × d % φ(N) = 1
  5. 对要传递的信息m进行加密得到明文c,c=m^{e}%N
  6. 接收者则利用明文c进行解密,得到密文m,m =\frac{c^{d}}{N}
  7. 在此过程中,传播者的信息有N,e,c;解密时需要的信息有n,d,c

参考链接:

CTF---RSA解密学习指南(一) - 知乎

银行密码系统安全吗?质数(素数)到底有啥用?李永乐老师11分钟讲RSA加密算法(2018最新)_哔哩哔哩_bilibili

CTF密码学中RSA学习以及总结_huanghelouzi的博客-CSDN博客_ctf rsa

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值