题目如下:
在一次RSA密钥对生成中,假设p=473398607161,q=4511491,e=17,求解出d
import gmpy2
p = 473398607161
q = 4511491
e = 17
phi = (p-1)*(q-1) #φ(n)在写的时候多用phi代替,因为键盘不好敲出来。
d = gmpy2.invert(e,phi) #e模phi的逆为d, (e*d)%phi==1 原理上面讲过
print (d)
在RSA算法中,通信要进行加密和解密,具体过程如下:
- 找出两个质数p、q,计算得到N = p × q,N一般是1024位的二进制数
- 计算欧拉函数φ(N) = (p-1)(q-1)
- 找到一个公钥e,满足1 < e < φ(N),且有e和φ(N)互质
- 根据公钥去寻找私钥d,满足e × d % φ(N) = 1
- 对要传递的信息m进行加密得到明文c,
- 接收者则利用明文c进行解密,得到密文m,
- 在此过程中,传播者的信息有N,e,c;解密时需要的信息有n,d,c
参考链接:
银行密码系统安全吗?质数(素数)到底有啥用?李永乐老师11分钟讲RSA加密算法(2018最新)_哔哩哔哩_bilibili