- 博客(7)
- 收藏
- 关注
原创 隐语实训第七讲 · 隐语在新能源车型的联合定价
传统车险预测面临着数据孤岛问题和精算效率问题,用户画像、用车行为、过往出险中前两项数据保险公司常常接触不到,但又对风险估计有着巨大影响。此外,保险公司常常采用手工式、经验式精算,不能满足一地一策、一险一策的客观诉求。车主年轻化、加速性能强、维修成本高导致高增长高赔付,该行业普遍亏损。高估风险,定价偏高,会导致竞争力低。1. 采用隐私计算、蚂蚁特征(大规模图学习+驾驶行为序列学习)、AutoML自动化建模。2. 设计分层架构:技术底座层、精算产品层、业务运营层。4. 组件化、模版化、自动化解决精算效率问题。
2025-05-21 21:18:54
250
原创 隐语实训第五讲 · 基于SecretNote项目案例实验
函数初始化节点(需要选中两个参与方一起执行)。然后配置SPU、加载数据集,创建PYU实例。为了构建一个更精准的负荷预测模型,并且在不解密数据的情况下进行训练,实现机构A节点。实验人员首先需要根据实验手册在SecretNote在线平台中添加机构A节点。之间的安全联合建模,实验对创建的Vertical DataFrame。最后使用特征工程后的数据集进行模型的训练和预测。本讲使用两个案例学习上手SecretNote在线实验环境。双方节点需要从特定的节点执行不同的任务,因此需要执行。函数查找未被占用的端口号。
2025-05-21 19:21:24
277
原创 隐语实训第四讲 · 基于MPC的隐私保护机器学习框架
一个好的前端能够以最小的修改代价和学习代价,来提升AI开发者的代码到达隐私保护级别,能够支持开发者熟悉的语言,例如Python,能够支持ML中常见的api,并更好地与最流行的ML框架(如TensorFlow和PyTorch)保持一致,能够决定在每个部分中使用哪个特定的MPC原语。MPC保证正确性,如果有输出, 输出必须是正确的;好的编译器需要多级的优化,包括传统优化和MPC专用优化,并且要扮演好MPC原语分发者的角色,还要能够处理不同的数据类型,处理特殊的运算,例如定点小数乘法之后的截位运算。
2025-05-14 00:45:57
526
原创 隐语实训第二讲 · 隐私计算全局概览
数据并行是指共享一个深度神经网络架构和共同的训练目标,用户独立训练本地模型,将梯度提交给服务器,聚合梯度,然后聚合的梯度返回用户,用户更新本地模型参数,反复迭代直至模型收敛。而模型并行是指和服务器维护一个共同模型,用户下载模型参数后对本地数据进行训练,将更新后模型参数上传服务器,服务器更新模型参数,然后用户下载更新后的模型参数,更新本地模型,反复迭代直至达到共同训练目标。数据的流通可以分为个人数据的生产融合、机构数据的开放流通以及数据提供者和数据消费者通过数据流通市场进行的数据交易。面对似乎是相互对立的。
2025-05-09 01:04:38
532
原创 隐语实训第一讲 · 数据隐私与隐私计算概述
大数据作为新能源,具有海量、高速、多样特性,重要性上升到国家战略层面。但数据隐私泄露问题频发,包括安全漏洞、第三方数据共享、数据存储处理不当等多方面原因。数据隐私涉及用户数据、个人信息和隐私信息,隐私保护需平衡数据应用与隐私安全,技术手段如数据失真、加密、匿名化各有优缺点。隐私计算是多学科交叉领域,旨在保护数据隐私的同时实现计算任务,让数据 “可用不可见”,其发展受到全球法规政策重视,推动了数据要素在隐私保护下的流通。
2025-05-06 23:52:09
568
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅