堆(Heap)通常是一个可以被看做一颗完全二叉树的数组对象。
完全二叉树的一些定义:
- 左孩子等于父节点*2+1,例如父节点的索引是0,那么左孩子就是1
- 右孩子等于父节点*2+2,例如父节点的索引是0,那么右孩子就是2
- 父节点等于(孩子的索引-1)/2,例如孩子的索引是2,那么父节点就是0
堆分为两种,分别是大根堆和小根堆
大根堆:父节点的值大于或等于子节点的值;(图片是引用的)
小根堆:父节点的值小于或等于子节点的值;(图片是引用的)
堆操作
Insert:某个数现在处在index位置,往上移动,和父节点比较,如果比父节点大,那么就交换位置
heapIfy:给定一个数和堆数组的长度,让这个数往下移动。
堆排序代码如下:
public void heapsort(int[] arr){
if (arr == null || arr.length<2){return;}
//将数组变成大根堆
for (int i = 0; i < arr.length; i++) { //O(N)
heapInsert(arr,i); //O(logN)
}
int heapSize = arr.length; //堆数组的长度
//大根堆第一个数永远是整个堆数组中最大的,把他放在heapSize-1的位置,
//相当于就排好了。堆数组长度也减一
swap(arr,0,--heapSize);
while (heapSize>0){ //O(N)
//将刚刚换上来的数往下移动,把最大的放在第一个位置
heapIfy(arr,0,heapSize); //O(logN)
swap(arr,0,--heapSize); //O(1)
}
}
public void heapInsert(int[] arr,int index){
while(arr[index]>arr[(index-1)/2]){
//如果比父节点大,就交换,然后让index变成父节点的索引,直到不能换
swap(arr,index,(index-1)/2);
index = (index-1)/2;
}
}
public void heapIfy(int[] arr,int index,int heapSize){
//给定一个index和大根堆数组长度,让index往下移动
int left = index*2+1; //左孩子的坐标
while (left < heapSize){ //当下面还有孩子的时候
//把两个孩子中值最大的下标给largest
int largest = left+1<heapSize && arr[left] < arr[left+1] ? left+1 : left;
//父节点和孩子中最大的值比较,把最大的赋值给largest
largest = arr[index] < arr[largest] ? largest : index;
if (largest == index){break;} //父节点比较大,结束
swap(arr,index,largest);
index = largest; //让index等于它的子节点
left = index*2+1; //继续往下比较
}
}
Java中也有相应的API
PriorityQueue<Integer>:底层的结构用的是小根堆
堆排序扩展题目
已知一个几乎有序的数组,几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离可以不超过k,并且k相对于数组来说比较小,请选择一个合适的排序算法针对这个数据进行排序。
public void sort(int[] arr,int k){
PriorityQueue<Integer> heap = new PriorityQueue<>();
int index = 0;
//一开始先放k个数进入小根堆
for (;index < k;index++){
heap.add(arr[index]);
}
int i = 0;
//将其他元素依次加入,并排序
for (;index < arr.length;i++,index++){
heap.add(arr[index]);
arr[i] = heap.poll();
}
//将剩下的元素排序
while (!heap.isEmpty()){
arr[i++] = heap.poll();
}
}