题目
n 位格雷码序列 是一个由 2n 个整数组成的序列,其中:
- 每个整数都在范围 [0, 2n - 1] 内(含 0 和 2n - 1)
- 第一个整数是 0
- 一个整数在序列中出现 不超过一次
- 每对 相邻 整数的二进制表示 恰好一位不同 ,且
- 第一个 和 最后一个 整数的二进制表示 恰好一位不同
给你一个整数 n ,返回任一有效的 n 位格雷码序列 。
解释
设 n 阶格雷码集合为 G(n)
设 G(n) 集合倒序(镜像)为 R(n),给 R(n) 每个元素二进制形式前面添加 1,得到 R′(n);
则G(n+1)=G(n)∪R′(n)
规律
n=3
000 G(n)
001
011
010
R(n)
110
1